Toroidal Vorticity @ LHC and EIC

Maria Stefaniak-Theohares with Mike Lisa

The Ohio State University

Presence of collectivity in "smaller" systems: pA?

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Presence of collectivity in "smaller" systems: pA?

iNSPIRE	literature \lor Collectivity in small collision s			
	Literature			
Date of paper	112 results ⊡ cite all			
	Small System Collectivity in Relation James L. Nagle (Colorado U.), William A. 2 Published in: Ann.Rev.Nucl.Part.Sci. 68 (2 pdf & DOI = cite			
100% Number of authors	Phenomenological Review on Qua Roman Pasechnik (Lund U. and Lund U., D Published in: <i>Universe</i> 3 (2017) 1, 7 • e-P			
Single author 64	🔓 pdf 🕜 DOI 🖃 cite 🕞 cla			
10 authors or less 105	Elliptic flow of charm and strange			
Exclude RPP	Published in: Phys.Rev.Lett. 121 (2018) 8			
Exclude Review of Particle Physics 112	🕒 pdf 🕜 DOI 🖃 cite 🗎 da			

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

systems					
Autho	ors Jobs	Seminars	Conferences N	Nore	
			Citation Summary	Most Cited V	
#1 Zajc (Columbia U.) (Jan 10, 2018) 2018) 211-235 • e-Print: 1801.03477 [nucl-ex]					
aim			c reference search		
ark–Gluon Plasma: Concepts vs. Observations #2 Dept. Theor. Phys.), Michal Šumbera (Rez, Nucl. Phys. Inst. and ASCR, Prague) (Nov 4, 2016) Print: 1611.01533 [hep-ph]					
laim			c reference search		
e hadrons (Apr 25, 20 3, 082301 •	in high-multiplicit 18) e-Print: 1804.09767	y pPb collisions a	t $\sqrt{s_{_{ m NN}}}=$ 8.16 TeV	#3	
atasets	🗟 claim		a reference search		

Presence of collectivity in "smaller" systems: pA?

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

systems					Q		
Authors	Jobs	Seminars	Conferences	More			
			Citation Summary (Most Cite	d 🗸		
ivistic Hadronic	and Nuclea	r Collisions			#1		
Zajc (Columbia U.)	(Jan 10, 2018)		*		S. St. Server		
2018) 211-235 • e-	Print: 1801.034	477 [nucl-ex]		and the second s			
laim			🗟 reference sea	ch 🕣 320 citat	tions		
ark–Gluon Plasn	na: Concept	s vs. Observation	S				
Dept. Theor. Phys.), Michal Šumbera (Rez, Nucl. Phys. Inst. and ASCR, Prague) (Nov 4, 2016)							
Print: 1611.01533 [hep-ph]						
aim			🗟 reference sea	ch	tions		
hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_{ m NN}}}=$ 8.16 TeV $^{+\circ}$							
(Apr 25, 2018)							
3, 082301 • e-Print:	1804.09767 [hep-ex]					
atasets 📑 clair	m		c reference sear	ch 🕀 135 citat	tions		

Presence of collectivity in "smaller" systems: pA?

Non-zero v_n in p+Pb collisions

ALICE: JHEP 2403 (2024) 092

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

"Ridge structure" in pp and pPb collisions

CMS Collaboration, Phys.Lett. B718, 795 (2013) CMS Collaboration, Phys. Rev. Lett. 116, 172302 (2016) CMS Collaboration, Eur. Phys. J. C72, 2012 (2012)

Presence of collectivity in "smaller" systems: pA?

Hydrodynamic flow in small systems

or: "How the heck is it possible that a system emitting only a dozen particles can be described by fluid dynamics?"

Ulrich Heinz¹*a*, in collaboration with J. Scott Moreland^{*b*}

^aDepartment of Physics, The Ohio State University, Columbus, OH 43210-1117, USA ^bDepartment of Physics, Duke University, Durham, NC 27708-0305, USA

E-mail: heinz.90osu.edu

IOP Conf. Series: Journal of Physics: Conf. Series 1271 (2019) 012018

v^{sub}{2}

0.02 {<mark>2}_{qns}^</mark>

$v_2 IN p+p, p+Pb, Pb+Pb COLLISIONS$ SEE ALSO:

CMS Preliminary

l∆ηl > 2

300

200

N^{offline}

ALICE COLLABORATION PHYS. LETT. B719 (2013) 29-41; PHYS. REV. C 90, 054901

ATLAS COLLABORATION PHYS. REV. LETT. 110, 182302 (2013); PHYS. REV. C 90.044906 (2014)

CMS COLLABORATION PHYS.REV.LETT. 115, 012301 (2015)

CMS PAS HIN-15-009

100

) pPb √s_{NN} = 5.02 TeV

☐ PbPb √s_{NN} = 2.76 Te\

 $0.3 < p_{_{T}} < 3 \text{ GeV/c}$

12

Björn Schenke, BNL

LHCP 2018

Presence of collectivity in "smaller" systems: pA?

Hydrodynamic flow in small systems

or: "How the heck is it possible that a system emittin a dozen particles can be described by fluid dyna

Ulrich Heinz^{1a}, in collaboration with J. Scott Moreland

^aDepartment of Physics, The Ohio State University, Columbus, OH 43210-^bDepartment of Physics, Duke University, Durham, NC 27708-0305, USA

E-mail: heinz.90osu.edu

IOP Conf. Series: Journal of Physics: Conf. Series 1271 (201

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

v_2 IN p+p, p+Pb, Pb+Pb COLLISIONS

SEE ALSO:

ALICE COLLABORATION PHYS. LETT. B719 (2013) 29-41; PHYS. REV. C 90, 054901

ATLAS COLLABORATION PHYS. REV. LETT. 110, 182302 (2013); PHYS. REV. C 90.044906 (2014)

CMS COLLABORATION PHYS.REV.LETT. 115, 012301 (2015)

Björn Schenke, BNL

LHCP 2018

Another way to probe fluid:

Takahashi: Nature Physics 12, 52-56 (2016)

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Vorticity

Vorticity represents local mechanical rotation of fluid

$$\overrightarrow{\omega}_{NR} = \frac{1}{2}\overrightarrow{\nabla} \times \overrightarrow{v}$$

Another way to probe fluid:

Liquid flow $\boldsymbol{\omega} = \operatorname{rot} \mathbf{v}$

source.

Takahashi: Nature Physics 12, 52-56 (2016)

 μ^{s} - spin voltage λ - spin-diffusion lenght σ_0 - electric conductivity ξ - related to fluid viscosity caused by angular-momentum tranfser

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Vorticity

Vorticity represents local mechanical rotation of fluid

$$\overrightarrow{\omega}_{NR} = \frac{1}{2}\overrightarrow{\nabla} \times \overrightarrow{v}$$

Vorticity is a spin-current

$$=\frac{1}{\lambda}\mu^{s}-\frac{4e^{2}}{\sigma_{0}\hbar}\xi\omega$$

Fig by Mike Lisa

Possible to measure via polarization:

Spin-orbit coupling produces an observable electron polarization proportional to the local fluid vorticity

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Fig by Mike Lisa

Possible to measure via polarization:

Spin-orbit coupling produces an observable electron polarization proportional to the local fluid vorticity

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

First observation

of fluid vortices

formed by heavy-

ion collisions

PARIS AGREEMENT Time for nations to match words with deeds **PAGE 25**

BOOKS

SUMMER SELECTION Recommended reading for the holiday season **PAGE 28**

STEM CELLS

YOUTHFUL **SECRETS**

How the hypothalamus helps to control the ageing process PAGE 52

3 August 2017 Vol. 548, No. 7665

⇒ NATURE.COM/NATURE

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Polarization via self-analyzing decay of $\Lambda o p + \pi^ \frac{dN}{d\cos(\theta)*} = \frac{1}{2} \left(1 + \alpha_H | \overrightarrow{P_H} | \cos \theta * \right)$

GLOBAL

Polarization via self-analyzing decay of $\Lambda \rightarrow p + \pi^ \frac{dN}{d\cos(\theta)^*} = \frac{1}{2} \left(1 + \alpha_H | \overrightarrow{P_H} | \cos \theta^* \right)$

GLOBAL

Polarization via self-analyzing decay of $\Lambda \rightarrow p + \pi^-$

 $\frac{dN}{d\cos(\theta)^*} = \frac{1}{2} \left(1 + \alpha_H | \overrightarrow{P_H} | \cos \theta^* \right)$

LOCAL

Effect of elliptic flow

Vorticity: Toroidal (smoke rings) Present (in physics) for ages.

S. L. Selmholts

Helmholtz (1858)

On Integrals of the Hydrodynamic Equations That Correspond to Vortex Motions

Persistent vortical toroids (smoke rings) are quintessential fluid behavior

perfect ring of smoke.

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Photo: Andreas Wilkens, Institute of Flow Sciences, Herrischried, Germany Figures from book: Subtle Agroecologies

Since the first *Minuteman* launches from Cape Canaveral in 1961, nearly every missile has generated a

Vorticity: Toroidal (smoke rings) Present (in physics) for ages.

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[4] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

Photo: Andreas Wilkens, Institute of Flow Sciences, Herrischried, Germany Figures from book: Subtle Agroecologies

Expanding smoke ring can be

 $\bar{R}_{NR}^{\hat{t}} = \left\langle \begin{array}{c} \overrightarrow{\omega}_{NR} \cdot (\hat{t} \times \vec{v}_{cell}) \\ \hline \hat{t} \times \vec{v}_{cell} \end{array} \right\rangle$

Curl of flow velocity \vec{v} :

 $\overrightarrow{\omega}_{NR} = \frac{1}{2}\overrightarrow{\nabla} \times \overrightarrow{v}$

 \hat{t} - thrust vector

animation: M. Stefaniak

Black arrows - velocity of fluid cell

- Surface friction with "wall" decreases velocity of the fluid
- Higher \vec{v} in the center of the "tube"
- Differences of \vec{v} induce an azimuthally 0 oriented vorticity structure
- The strength and sense of created vortex toroid structures:

$$\epsilon^{\mu\nu\rho\sigma}\Omega_{\mu}n_{\nu}\hat{t}_{\rho}u_{\sigma}$$

$$=\frac{\epsilon^{\mu\nu\rho\sigma}\Omega_{\mu}n_{\nu}\hat{t}_{\rho}u_{\sigma}}{\epsilon^{\mu\nu\rho\sigma}n_{\nu}\hat{t}_{\rho}u_{\sigma}}$$

 Ω_{μ} - proxy for vorticity $\epsilon^{\mu\nu\rho\sigma}$ - Levi-Civvita tensor, fully asymetric in four dimensions n_{ν} - normal vector of the fluid cell

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[H] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

animation: M. Stefaniak

Black arrows - velocity of fluid cell

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[H] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

- Surface friction with "wall" decreases velocity of the fluid
- Higher \vec{v} in the center of the "tube"
- Differences of \vec{v} induce an azimuthally oriented vorticity structure
- The strength and sense of created vortex toroid structures:

 $R_{fluid}^{\hat{t}} = \frac{\epsilon^{\mu\nu\rho\sigma}\Omega_{\mu}n_{\nu}t_{\rho}u_{\sigma}}{|\epsilon^{\mu\nu\rho\sigma}n_{\nu}\hat{t}_{\rho}u_{\sigma}|}$

animation: M. Stefaniak

Black arrows - velocity of fluid cell

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[H] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

- Surface friction with "wall" decreases velocity of the fluid
- Higher \vec{v} in the center of the "tube"
- Differences of \vec{v} induce an azimuthally oriented vorticity structure
- The strength and sense of created vortex toroid structures:

 $=\frac{\epsilon^{\mu\nu\rho\sigma}\Omega_{\mu}n_{\nu}t_{\rho}u_{\sigma}}{|\epsilon^{\mu\nu\rho\sigma}n_{\nu}\hat{t}_{\rho}u_{\sigma}|}$

animation: M. Stefaniak

Black arrows - velocity of fluid cell

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[H] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

- Surface friction with "wall" decreases velocity of the fluid
- Higher \vec{v} in the center of the "tube"
- Differences of \vec{v} induce an azimuthally oriented vorticity structure
- The strength and sense of created vortex toroid structures:

 $=\frac{\epsilon^{\mu\nu\rho\sigma}\Omega_{\mu}n_{\nu}t_{\rho}u_{\sigma}}{|\epsilon^{\mu\nu\rho\sigma}n_{\nu}\hat{t}_{\rho}u_{\sigma}|}$

animation: M. Stefaniak

Black arrows - velocity of fluid cell

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[H] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

- Higher \vec{v} in the center of the "tube"
- Differences of \vec{v} induce an azimuthally oriented vorticity structure
- The strength and sense of created vortex toroid structures:

$$iid = \frac{\epsilon^{\mu\nu\rho\sigma}\Omega_{\mu}n_{\nu}\hat{t}_{\rho}u_{\sigma}}{\epsilon^{\mu\nu\rho\sigma}n_{\nu}\hat{t}_{\rho}u_{\sigma}}$$

- Spin-orbit coupling produces polarization proportional to the local fluid vorticity ω
- In relativistic treatment vorticity (thermal): $\omega_{th}^{\mu\nu} = \frac{1}{2} \left[\partial^{\nu} (u^{\mu}/T) - \partial^{\mu} (u^{\nu}/T) \right]$
- The hyperon polarization is dictated by the fluid vorticity distribution on "freeze-out" hypersurface Σ :

$$S^{\mu}(p) = -\frac{1}{8m} \epsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int d\Sigma_{\lambda} p^{\lambda} n_{F} (1 - n_{F}) \omega_{\rho\sigma}}{\int d\Sigma_{\lambda} p^{\lambda} n_{F}}$$

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[H] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

Measured hadrons are not part of evolving fluid, but they are created in process of hadronization

 n_F -Fermi-Dirac distribution more details: F. Becattini, et al: Annals Phys. 338, 32 (2013)

In [1] authors use the Cooper-Fry procedure to switch from hydro paradigm to hadrons

HADRONIZATION

 $\bar{R}_{NR}^{\hat{t}} = \left\langle \frac{\overrightarrow{\omega}_{NR} \cdot (\hat{t} \times \vec{v}_{cell})}{|\hat{t} \times \vec{v}_{cell}|} \right\rangle$

() - three-vectors in NN frame M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[4] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

 S_{μ} - Λ spin four-vector p_{σ} - Λ momentum four-vector

Proposition of Toroidal vorticity probe in HIC:

 $\frac{\epsilon^{\mu\nu\rho\sigma}S_{\mu}n_{\nu}\hat{t}_{\rho}p_{\sigma}}{|S||\epsilon^{\mu\nu\rho\sigma}n_{\nu}\hat{t}_{\rho}p_{\sigma}|}$

$$\bar{R}_{\Lambda}^{\hat{z}} = 2 \left\langle \frac{\overrightarrow{S'}_{\Lambda} \cdot (\hat{z}' \times \vec{p}'_{\Lambda})}{|\hat{z}' \times \vec{p}'_{\Lambda}|} \right\rangle_{\phi}$$

Proton drilling a nuclei:

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[4] M Lisa, et al: Phys. Rev. C 104, 011901 (2021)

a) A boost-invariant flow distribution with more matter in the nuclei-going direction.

b) The edges of the cylinder flow more in the nuclei-going direction than fluid cells at the center of the cylinder.

Simulations with MUSIC [1]:

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the L[4] M Lisα, et al: Phys. Rev. C 104, 011901 (2021)

No TV

With TV

- According to [1]:
- \odot Dependent of $\sqrt{s_{NN}}$
- Solution No need to measure Event Plane!
- Signal present also for AntiLambdas! As opposed to the known hadronic high-x production-plane polarization effect

Smoking rings at LHC

- In the second secon
- Sorward rapidity coverage
- Multiple p+A (+PbNe) collision systems ready
 - to be studied with incredible statistics

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Smoking rings at LHC and EIC

- $^{\circ}$ High precision of Λ identification
- Sorward rapidity coverage
- Multiple p+A (+PbNe) collision systems ready
 - to be studied with incredible statistics

M. Stefaniak-Theohares: Physics with high-luminosity proton-nucleus collisions at the LHC

Toroidal vortexes in e+A collisions?

Thank you!

