Exploring the origins of collective flow in p+A collisions

Sören Schlichting | Universität Bielefeld

Based on Ambrus, SS, Werthmann *Phys.Rev.Lett.* 130 (2023) 15, 152301 *Phys.Rev.D* 107 (2023) 9, 094013 +work in preparation

CERN Workshop Jul 2024

Flow in pA

Collective flow emerges as dynamical response to initial eccentricity

 $v_2 \simeq \kappa \epsilon_2$

observed in all collision systems at LHC

Initial state geometry in p+A arises from proton shape fluctuations and is poorly constrained => severely limits predictive power of models

Different physics pictures can explain observed magnitude of flow in p+A collisions, due to poorly constrained initial state geometry in p+A

How to discriminate small opacity (weekly interacting final state) from large opacity (nearly perfect fluid) regime?

Basic Idea

Discriminate low opacity and high opacity regime, by studying the change of flow as a function of center of mass energy

Higher C.O.M energy => Higher initial energy density

Increased number of final state interaction => Strong increase in flow Smaller dissipative effects => mild increase in flow

Effective kinetic theory description

Effective kinetic theory can capture both low and high opacity regime

Event-by-event simulations feasible within simple conformal kinetic theory

$$
p^{\mu}\partial_{\mu}f=-\frac{p\cdot u}{\tau_R}(f-f_{\text{eq}}),
$$

Elliptic flow of energy-momentum tensor only depends on initial state geometry e(xT) and single dimensionless opacity parameter

$$
\hat{\gamma} = \frac{1}{5\eta/s}\left(\frac{R}{\pi a}\frac{\mathrm{d}E_\perp^0}{\mathrm{d}\eta}\right)^{1/4},
$$

system size, viscosity and energy dependence

Effective kinetic theory description

Separate initial state geometry and dynamical response by studying same system **at two different energies**

 $v_2 \simeq \kappa \epsilon_2$

as geometry (e_2) stays identical but dynamical response (κ) changes

Change in response is highly sensitive to opacity as

k($\hat{\gamma} \ll 1$) = $\kappa'_0 \hat{\gamma}$

k($\hat{\gamma} \gg 1$) = κ_{Id}

O+O collisions @ RHIC vs. LHC

Disentangling geometry & evolution

Eliminate geometry by studying difference/mean

$$
\frac{v_2^2(\sqrt{s_3}) - v_2^2(\sqrt{s_3})}{(v_2^2(\sqrt{s_3}) + v_2^2(\sqrt{s_3}))/2} \approx \Delta \log(v_2^2)
$$

Since change in opacity is $\sim \left(\frac{dE_{\perp}}{dn}\right)$ it is natural to also measure *dE*[⊥] *dη*) 1/4

$$
\frac{dE_{\perp}/d\eta(\sqrt{s_0}) - dE_{\perp}/d\eta(\sqrt{s_0})}{(dE_{\perp}/d\eta(\sqrt{s_0}) + dE_{\perp}/d\eta(\sqrt{s_0}))/2} \approx \Delta \log(dE_{\perp}/d\eta) \approx 4\Delta \log(\hat{\gamma})
$$

such that
$$
W = 2 \frac{\Delta \log(v_2^2)}{\Delta dE_{\perp}/d\eta} \approx \frac{d \log(\kappa(\hat{\gamma}))}{d \log(\hat{\gamma})} \rightarrow
$$
 1 (low opacity)
0 (high opacity)

=> Data driven approach to quantify the degree of hydrodynamic behaviour

Proof of principle

Vary opacity by varying viscosity in simulation & re-construct from flow measurement

Proof of principle

Data comparison for Pb+Pb collisions at LHC

y-position deduced from experimental measurements

x-position is determined from theory (TrEnTo initial state & same η/s=0.12 as required to reproduce correct magnitude of flow)

Good agreement with calibration curve (within large errors)

Discussion

Change in collective flow as fct of COM energy can be used to pin point mechanism behind collective behaviour

Wish list:

- p+Pb collisions at two different COM energies

- precision measurements of collective flow and transverse energy (preferably energy (m_T) weigthed $v₂$ which is most directly related to anisotropy of energy-momentum tensor)

- event classification in terms transverse energy at mid-rapidity

ToDo's:

- Non-conformal effects (EoS)
- predictions for p+Pb