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Flow In pA
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Initial state geometry in p+A arises from proton shape fluctuations and is
poorly constrained => severely limits predictive power of models

Different physics pictures can explain observed magnitude of flow in
p+A collisions, due to poorly constrained initial state geometry in p+A

How to discriminate small opacity (weekly interacting final state) from
large opacity (nearly perfect fluid) regime?
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Basic |ldea

Discriminate low opacity and high opacity regime, by studying the
change of flow as a function of center of mass energy

Higher C.O.M energy => Higher initial energy density

low opacity

Increased number of
final state interaction

=> Strong increase in flow

high opacity

Smaller dissipative
effects

=> mild increase in flow
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Effective kinetic theory description

Effective kinetic theory can capture both low and high opacity regime

Event-by-event simulations feasible within
simple conformal kinetic theory

PO, f = =22 (f = feq),
TR

Elliptic flow of energy-momentum tensor only depends on initial state
geometry e(xT) and single dimensionless opacity parameter
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system size, viscosity and energy dependence



Effective kinetic theory description
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Disentangling geometry & evolution

Separate initial state geometry
and dynamical response by
studying same system at two
different energies

V2 ~ K€2

as geometry (e2) stays identical
but dynamical response (K)
changes

Change in response is highly
sensitive to opacity as
low opacity: k(P <k 1) = K(’);?

high opacity: k(7 > 1) = k4
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Disentangling geometry & evolution

Eliminate geometry by studying difference/mean

(Vs) = vi(s )
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Since change in opacity is  ~ (

dE, ldn(/s,) — dE\/dn(\/s )
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Alog(vy)  dlog(k(})) 1 (low opacity)
AdE | /dn - d log(y) ’ 0 (high opacity)

~ Alog(dE,/dn)) =~ 4Alog(y)

such that W=2

=> Data driven approach to quantity the degree of hydrodynamic
behaviour



Proof of principle
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Vary opacity by varying viscosity in simulation &

re-construct from flow measurement



Proof of principle

Data comparison for Pb+Pb collisions at LHC
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Good agreement with calibration curve (within large errors)
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Discussion

Change in collective flow as fct of COM energy can be used to
pin point mechanism behind collective behaviour

Wish list;
- p+Pb collisions at two different COM energies

- precision measurements of collective flow and transverse
energy (preferably energy (mr) weigthed vo which is most
directly related to anisotropy of energy-momentum tensor)

- event classification in terms transverse energy at mid-rapidity

ToDo’s:
- Non-conformal effects (EoS)

- predictions for p+Pb



