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Introduction
• Fast Machine Learning is becoming prevalent at the level of hardware triggering in FPGAs and even at the detector frontend


• Data deluge from increasingly granular detectors, and searches for rare phenomena require precise and fast selections


• In this presentation I’ll present:


• Tools: hls4ml and conifer


• Techniques for high performance


- Quantization aware training, pruning, hardware-aware training


• Applications


- Developments using hls4ml and conifer 


- Many from CMS, plus some others


- Some non-HEP use cases


- Roughly in direction of furthest → closest to detector
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About me
• PhD High Energy Physics Imperial College London


• Thesis: “Applications of FPGAs to triggering in particle physics”


• Designing physics algorithms with high level languages for FPGAs


• Applied Physicist Staff at CERN (previously Senior Fellow) working on Level 1 
Trigger Upgrade for CMS experiment, EP-CMG-OS group


• Mostly designing and implementing detector reconstruction algorithms for 
Level 1 Trigger


• Track reconstruction, vertexing, particle flow, jets


• Also deploying Machine Learning into FPGAs for low latency


• hls4ml coordinator 2020-2022, creator and maintainer of conifer 

• Developing and deploying ML algorithms to the trigger
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hls4ml Introduction - Sioni Summers

The challenge: triggering at LHC
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At LHC protons collide at 40 MHz → extreme data rates O(100 Tb/s) 
Most collisions don’t produce exciting new particles 

“Triggering” = filtering events to reduce data rates to manageable levels
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At LHC protons collide at 40 MHz → extreme data rates O(100 Tb/s) 
Most collisions don’t produce exciting new particles 

“Triggering” = filtering events to reduce data rates to manageable levels
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Trigger at LHC
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Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

Process 100s Tb/s

Trigger decision to be made in latency O(μs)

Frontends in rad. hard ASICs, processing in 
FPGAs


Computing farm for detailed 
analysis of the full event

Latency O(100 ms)

custom hardware

computing farm

100 ms 1 s1 ns 1 μs

Triggering performed in multiple stages @ ATLAS and CMS

Reduce data rate in stages
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CMS Detector Upgrade 1: Tracker
• At CMS the Phase 2 Upgrade brings data from new detectors 

to the trigger for the first time


• New Outer Tracker implements on-detector pT cut


• Two silicon strip sensors separated by few mm


- Far enough to measure bending of charged particle in B field


- Close enough to be read out on one device


- “Stubs” passing 2 GeV pT cut → Level 1 Trigger


• Level 1 Track Finder system reconstructs tracks from stubs


- Around 200 FPGAs, with “classical” tracking algorithms: data 
organisation, seed building, road following, track fitting


• Tracks in the Level 1 Trigger essential for 200 PU conditions


-  Reconstruct primary vertex for suppression of 200 PU 
background


- Better measurements of properties of electrons, muons, jets


- 6.4 Tb/s of reconstructed tracks sent downstream
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CMS Detector Upgrade 2: HGCal
• High granularity calorimeter: silicon sampling calorimeter for the endcaps


• 6.5 million channels in 50 layers


- Very fine transverse and longitudinal segmentation 


• Dedicated ASIC to prepare data for trigger reconstruction - more later


• Trigger backend comprises around 200 FPGAs


- Reconstructing 3D clusters: 4 Tb/s clusters sent downstream
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arXiv:1708.08234CMS-TDR-019

https://arxiv.org/abs/1708.08234
https://cds.cern.ch/record/2293646/files/CMS-TDR-019.pdf
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CMS Level 1 Trigger
• Phase 2 Upgrade of CMS L1T will have hundreds of boards with FPGAs like 

those shown below - AMD/Xilinx Ultrascale+ FPGAs

• Data rate of multiple terabits per second into / out of each board on optical 

fibres

• System organised in layers with normally ~ 1-2 μs per step


- Reducing raw detector data into physics objects (e.g. track finding: hits to 
tracks)


- New event every 25 ns, latency for trigger decision for one event 12.5 μs


• Final output is one bit: keep or discard event

9

Detector
‘Counting Room’ 

(L1 Trigger)

HLT
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Machine Learning
• Build models that learn from data in order to make 

predictions on new, unseen data


• “Models” can be Neural Networks, Decision 
Forests, or anything else “trainable”


• “Training” is the process of fitting the model 
parameters that best describe the data


• “Inference” is the process of using a fitted model to 
make new predictions


- For Fast ML at experiments we are mostly 
concerned with making fast inference


• ML used in HEP since the first ML wave in the 80s, 
and nowadays extremely prevalent


• Different model types for different data 
representations

10

Images: convolutionalTabular: fully connected

or Decision Forest

Time series: recurrent Point cloud: graph

Sequence-to-sequence: transformer
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high level synthesis for machine learning


Catapult
Coming soon

(Q)

(Q)

fastmachinelearning.org/hls4ml/ 
pip install hls4ml 

http://fastmachinelearning.org/hls4ml/
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hls4ml - Dataflow Architecture
• Dataflow architecture: each layer is an independent compute unit


- With tunable parallelism and quantization


• Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown)


- Example: small CNN trained on MNIST
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Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax Prediction
FIFOs
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conifer for Decision Forests
• Neural Networks like Transformers for Large Language Models 

dominate the ML discourse


• But the old ways are still relevant: Decision Forests (“MVAs”)


- Fast, lightweight, robust (arXiv:2207.08815, IML keynote)


• conifer is to DFs as hls4ml is to NNs


• A Decision Tree splits on data variables until reaching a leaf


- Leaves associate a score corresponding to prediction probability


• A Decision Forest is an ensemble of Decision Trees


- Randomisation of each DT as a form of regularisation


- Ensemble score is an aggregation over trees e.g. sum


• conifer maps DFs onto FPGA logic


- Implemented with high parallelism for low latency and high 
throughput
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https://arxiv.org/abs/2207.08815
https://indico.cern.ch/event/1297159/contributions/5766806/
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conifer implementations
• Very much like hls4ml, conifer has frontends, an Internal 

Representation, and backends


• Frontend support for popular BDT training libraries


• Backends: HLS, (hand-written) VHDL, Forest Processing 
Unit (FPU)


• HLS and VHDL backends map one DF to one hardware 
implementation


- Capable of inference at O(10) ns latency, O(100) MHz 
throughput


• FPU is a reconfigurable module that new models can be 
loaded onto


- Binaries for some AMD devices for download 


- Implemented with HLS


• GitHub, website, paper, pip install conifer

14

VHDL

Internal 
Representation

FPU

https://ssummers.web.cern.ch/conifer/downloads/
https://github.com/thesps/conifer
https://ssummers.web.cern.ch/conifer/
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
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hls4ml and conifer key features
• Easy to use


- Reduce the barrier to entry for non hardware experts


- Python packages with nice interfaces to EDA tools


- pip install hls4ml conifer


- Configuration interface for fine-grained control


- Tutorial and documentation for getting started


• High Level Synthesis implementations (C++)


- More accessible, and powerful Design Space Exploration


• Open source software, open communities


- fastmachinelearning.org 


• Massively parallel for low latency and high throughput


- ‘Unrolled’ implementations


• Common interfaces


- Make it easier to integrate generated IPs into designs
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

~ 175 ns


~ 75 ns

https://github.com/fastmachinelearning/hls4ml-tutorial
http://fastmachinelearning.org
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Efficient training: pruning
• A Neural Network or Decision Forest may contain 

many redundant connections


• Pruning methods generally remove some 
connections from the final model


- Can improve generalisability also


• hls4ml and conifer’s fully unrolled 
implementations can avoid unnecessary logic for 
pruned connections and save resources (lower 
left image)


• Different methods:


- Regularisation (penalise low value weights, then 
make them 0)


- Target sparsity, e.g. sparsity ramp up with TFMOT 
(lower right image)


- Structured pruning - remove continuous blocks of 
weights; Filter pruning - entire filters of CNN

16

Images from Tensorflow blog

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
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Efficient Training: Quantization
• Possibly the main technique for making NNs cheaper in FPGAs!


• Using regular TensorFlow Keras or PyTorch, you typically train 
with floating point


- We like to avoid floating point in FPGAs - much more costly in 
resources & latency than fixed point


- You can do Post-Training Quantisation (PTQ): represent the float 
values with some fixed point


• With Quantization Aware Training (QAT), you constrain weights/
biases/activations to fewer values during training


- Superior to PTQ for lower bitwidths - can go all the way down to 
1 bit (representing ±1)


- Use quantizations with efficient hardware operators: integer, fixed 
point, power of 2


- Use ‘Straight Through Estimator’ for back propagation step

17

arXiv:2103.13630

https://arxiv.org/pdf/2103.13630.pdf
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QKeras
• QKeras is the Quantization Aware Training extension of Keras


• We trained ‘normal’ floating point NNs with Keras and low-precision NNs 
with QKeras on a benchmark jet tagging problem


• (Top plot) accuracy with QKeras training down to 6-bits is lossless wrt 
floating-point Keras


- Big improvement over ‘post-training quantization’


- Dashed line → solid lines


• As we reduce bitwidth, resource usage goes down


- At small bitwidths LUTs are preferred over DSPs


- The ‘critical resource’ usage decreases from 56% (DSPs) for the Baseline (B) 
to 3.4% (LUTs) for the 6-bit QKeras model (no performance loss)


- QO model is tiny (1% DSPs/critical), 2% lost accuracy


• Right panel ‘QO’ shows some automatic optimisation of the bitwidth trading 
accuracy vs resource cost (AutoQ)

doi: 10.1038/s42256-021-00356-5

https://www.nature.com/articles/s42256-021-00356-5


Fast ML at the Edge - Sioni Summers8 March 2024

Example of QAT & Pruning
• From the hls4ml tutorial


- Tagging jets (5 classes q/g/t/W/Z, 16 input variables)


• 3 hidden layer MLP (Dense layers):


- 1) Keras floating point training, 16b inference


- 2) QKeras with 6 bits for weights, biases, activations & 
75% sparsity target with TFMOT


- Minimal code changes required to go from 1) to 2)

19

%VU9P Latency DSP LUT

Keras 16b 50 ns 1890 (15%) 5%

QKeras 6b 40 ns 22 (~0%) 1%

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied
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CASE STUDY: JET SUBSTRUCTURE 10
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ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Z W gluon

Better

https://github.com/fastmachinelearning/hls4ml-tutorial
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Optimised training for hardware
• With some heuristic for runtime cost, models can be optimised at training time to tradeoff accuracy and cost


• Left example: total bits of model parameters as proxy for hardware cost vs model accuracy


• Right example: finding Pareto optimal Decision Forests for accuracy and resources using fast estimation

20
doi: 10.1088/2632-2153/ac0ea1 A. Oliver

https://iopscience.iop.org/article/10.1088/2632-2153/ac0ea1
https://indico.cern.ch/event/1283970/contributions/5554339/attachments/2721331/4727844/Fast%20ML%20for%20science%202023%20Andrew%20OLIVER.pdf
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New Trigger strategies: anomaly detection
• What if the selections we’ve been making in the trigger are wrong? We could be missing the New Physics


• Anomaly Detection method proposed to search for New Physics in a model agnostic / unbiased way


- Train a Variational AutoEncoder on unbiased data (background + ε new physics), trigger events with a high loss: anomalies


• Tiny VAE translated to FPGA with hls4ml requiring 50 ns latency for integration with Run 3 system


• Tested in ‘safe mode’ without triggering CMS in 2023, aiming to take data in 2024

21
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Anomaly Detection Tech Workflow

22
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ML at CMS L1T: from Run 3 to Phase 2
• In addition to axol1tl there are three other projects using 

ML for triggering CMS in Run 3:


- In development: CICADA, complementary anomaly 
detection technique using low level data from the 
calorimeter (top image)


- Tested in ‘safe mode’: topology trigger (topol1tl): classifier 
models for better triggering of specific final states


- In production: pT regression of muons in the endcap


• For Phase 2 we expect ML to be well embedded into L1T


- Significantly more powerful compute, 3x latency budget


- Around 20 projects (NNs, BDTs) in development


- Accounting for 25 billion ML inferences per second

23

CMS-DP-2023-086

https://cicada.web.cern.ch/
https://cds.cern.ch/record/2879816
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Jet Tagging
• Jet tagging: classifying the particle 

flavour that initiated a jet


• Developments in tagging at L1T 
following huge progress in tagging for 
offline reconstruction


• For Phase 2 will have similar “low-
level” information available: particles 
and their properties


• Developing support for the same 
kinds of cutting edge ML models


- Graph NNs, DeepSets


- Using the best practice techniques 
previously described: tiny models, 
quantized, pruned

24

Loukas Gouskos, CERN DS Seminar

https://indico.cern.ch/event/1201307/
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Jet Reconstruction at CMS L1T
• CMS Phase 2 will perform Particle Flow in the Level 1 Trigger for the first time


• Now we can cluster particles into jets and tag the flavour of those jets


• First we develop a fast and performant jet reconstruction for FPGA


- Latency 750 ns for 12 jets, performance close to anti-kT on the same particles


- Both small & large radius reconstructions for unmerged & merged jets


• Jet constituents are buffered and provided for downstream processing: taggers

25
arXiv:2310.08062

https://arxiv.org/pdf/2310.08062.pdf
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Jet Tagging Architectures for L1T
• Now we have the clustered particles in one place in the FPGA, we can send them to a Neural Network for tagging


• Which Neural Network model architectures performs well for jet tagging, and can we deploy it in an FPGA with O(100) ns 
latency and O(100) MHz throughput?
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Jet Tagging at CMS L1T
• Jets are first reconstructed with the described algorithm


• Using DeepSets-inspired architecture for b tagging


- Relies on track displacement measurement from L1 track 
finder


• Tiny model improves trigger reach to important final states 
(HH→bbbb shown)


• Fits in FPGA (right) and total latency (jet reco + tagging) less 
than 1 μs

27

Particle Receiving 
Jet Constituent Finding 

Jet Axis Computation 
Sorting, Buffering 

B tagging Neural Network

CMS-DP-2022-021 AMD VU9P

https://cds.cern.ch/record/2814728
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CMS Phase 2 L1T electron ID
• Electrons will be reconstructed by linking a track with a 

calorimeter cluster


• Neither reconstruction is perfect, and electrons bremsstrahlung


• Baseline kinematic approach used distance and pT 
compatibility to make a link


• New BDT approach first makes a loose kinematic selection, 
then uses ML to predict probability that the track & cluster both 
originated from an electron


• Improved electron reconstruction efficiency with new method 
(bottom left)


• xgboost for model training, conifer for inference


- Tiny model with 10 trees & maximum depth 4


- 10 parallel model copies to maintain electron reco rate


- Well within system resource and latency envelope

28

CMS-DP-2023-047

AM
D

 VU
13P

https://cds.cern.ch/record/2868782
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• NA62: fixed target experiment measuring ultra rare kaon 
decays


- BR( ) = (8.4±1.0) x 10-11


• Hardware trigger reduces from 750 MHz beam to 1 MHz


• L0TP+ upgrade includes a DNN to classify number of 
rings in RICH detector


- Using QKeras and hls4ml to deploy to FPGA


• Tested in parasitic mode (alongside classical triggers)

K+ → π+νν̄

29

Cristian Rossi, CHEP 2023

NA62 RICH Trigger

https://indico.jlab.org/event/459/contributions/11371/attachments/9667/14217/CHEP2023_L0TP.pdf
https://indico.jlab.org/event/459/contributions/11371/attachments/9667/14217/CHEP2023_L0TP.pdf


Fast ML at the Edge - Sioni Summers8 March 2024

ATLAS LAr Calorimeter

• Convolutional and Recurrent Neural Networks 
for real-time energy reconstruction of ATLAS 
LAr Calorimeter for Phase 2


• Up to around 600 calorimeter channels 
processed by on device


• 200 ns latency of predictions


• Implemented on Intel FPGAs (previous 
examples all AMD)


- Team contributed majorly to RNN and Intel 
implementations of hls4ml

30

doi: 10.1007/s41781-021-00066-y

https://doi.org/10.1007/s41781-021-00066-y
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GraphNN Track Reconstruction
• Graph representation suits HEP data well: point-cloud data 

with edges and vertices


• Graph Neural Networks make predictions on graphs: track 
parameters from graph of hits


• Below: hardware architecture for ATLAS Inner Tracker 
reconstruction with GNN

31
S. Dittmeier

arXiv:2012.01249

• Implementations for FPGA with hls4ml have been developed


• Graph NNs are expensive, scaling larger graphs is WIP

doi: 10.3389/fdata.2022.828666

https://indico.jlab.org/event/459/contributions/11375/attachments/9434/13680/CHEP_GNNonFPGAforEFTracking.pdf
https://arxiv.org/pdf/2012.01249.pdf
https://doi.org/10.3389/fdata.2022.828666
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Applications: on-detector ML
• ECON-T ASIC for CMS High Granularity Calorimeter


- Compress data to be sent to trigger FPGAs with an AutoEncoder in frontend, decode off detector


- Includes “classical” algorithms (e.g. summing neighbouring cells) and an AutoEncoder
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On detector Off detector (trigger)lpGBT

doi: 10.1109/TNS.2021.3087100

https://ieeexplore.ieee.org/document/9447722
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Applications: on-detector ML
• Neural Net encoder IP block created for ECON-T ASIC with Catapult HLS 

(Mentor/Siemens) and hls4ml

- NN architecture is fixed, weights can be reprogrammed over I2C e.g. after NN 

retraining


- NN parameters (weights and biases) triplicated for radiation tolerance


• Decoder block would run in trigger FPGAs


• Device manufactured and validated


• Can do Fault analysis at ML model level: FKeras (towards RadHard training)

33C. Suarez

https://indico.cern.ch/event/1283970/contributions/5550653/attachments/2722805/4730907/fkeras-fastml23.pdf
https://lss.fnal.gov/archive/2022/poster/fermilab-poster-22-214-ppd.pdf
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Smart Pixels
• Data reduction and reconstruction on sensor for 

silicon pixel detectors


• Pixel detectors not read into hardware trigger systems


- High data rate, expensive reconstruction


• Predict charged particle crossing position (x,y) and 
angles (⍺,β) from sensor charge measurements


- And their covariance matrix


- Could be for data reduction or early processing


• Tiny Convolutional Neural Network using hls4ml and 
Quantization Aware Training (QKeras)


• Opportunity to massively reduce search space for next 
hit along a track trajectory with on-sensor reco.


• Towards pixel reconstruction in trigger & simplified 
offline reconstruction


• Open dataset
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arXiv:2312.11676

https://zenodo.org/records/7331128
https://arxiv.org/pdf/2312.11676.pdf
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TinyML - MLPerf Tiny ™
• MLCommons group organise benchmarks of Machine Learning (MLPerf) - now also for low power devices (MLPerf Tiny)


• 4 benchmark datasets, open/closed division allowing/disallowing model retraining


• hls4ml in open category (for Quantisation Aware Training) achieves competitive performance


• In collaboration with AMD / Xilinx Research Labs developers of FINN project
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Benchmark CIFAR-10 ToyADMOS

Team Device Accuracy Latency (ms) Energy (uJ) AUC Latency (ms) Energy (uJ)

hls4ml Pynq-z2¹ 83.5% 7.64 12266 0.83 0.019 30.1

GreenWaves GAP9 EVK² 85% 0.62 40.4 0.85 0.18 7.3

STMicro Nucleo-L4R5ZI³ 85% 54.3 8707 0.85 1.82 266.5

OctoML Nucleo-L4R5ZI³ 85% 389.2 21342 0.85 11.7 633.7

1 2 3

CIFAR-10

ToyADMOS

https://mlcommons.org/en/inference-tiny-07/
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Autonomous Vehicles
• Image segmentation is labelling the class of each pixel of an image


- e.g. road, vehicle, pedestrian, other for a self driving car


• Project undertaken in partnership with Zenseact - Swedish autonomous vehicle ML 
solutions company - and CERN Knowledge Transfer (Paper, web)


• Developed new image-streaming CNN implementations for hls4ml


• Trained Quantized NNs with AutoQKeras on Cityscapes dataset


- Label pixels as road/pedestrian/car/background


- Lowest latency model has around 10k parameters, 8 bit quantisation


• Deployed on ZCU102 Zynq SoC kit with hls4ml


- 5 ms latency with batch size = 1, 30 ms with batch size = 10
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https://arxiv.org/abs/2205.07690
https://home.cern/news/news/knowledge-sharing/colliding-particles-not-cars-cerns-machine-learning-could-help-self
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hls4ml - Earth Observation
• Using hls4ml to monitor plastics pollution in the ocean 

onboard Earth Observation satellites


• Satellites use space-grade FPGAs that are resistant to errors 
caused by bit-flips from radiation


• Downlink bandwidth is limited, and missions may only look for 
certain objects (plastics pollution, land use)


• Hyper-spectral imaging and Deep Neural Networks effective 
at detecting surface objects from satellites


- Image segmentation - label each pixel


• Deploy DNN onboard satellite to identify debris, avoid 
downlink of useless data, decreasing mission cost and 
notification time


• Using hls4ml to reach sweet spot of performance, area, 
latency/throughput and power usage


• New project since 2 months, first results soon!
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https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262247
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NextGen Triggers

• If this sounds exciting to you, there are opportunities to get involved!


• New 5 year project at CERN to advance use of Artificial Intelligence for LHC experiment’s trigger selections


• Opportunities for students (bachelors, masters, doctoral) and postdocs opening ~now and throughout the next 5 years


• For CMS L1T projects contact me and Cristina Botta


• For ATLAS projects contact Markus Elsing, Stefano Veneziano


• For hls4ml and conifer development projects contact Maurizio Pierini


• hls4ml and conifer are also open source software, and contributions can come from anywhere
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Summary
• Fast Machine Learning is changing the way we process detector data and make trigger decisions


• Embedding ML closer to the detector requires sophisticated techniques


- Strict constraints (low latency, high throughput, low area, low power) and often highly custom compute platforms


- Projects like hls4ml and conifer aim to lower the barrier to entry for deployment of ML models optimised for the needs of HEP


• I presented the tools, and techniques like Quantization Aware Training, pruning, and hardware aware training


• We reviewed applications, from final trigger decision selections to frontend data processing
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