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Outline
● Theoretical motivation

– Dark-sector model for asymmetric dark matter
– Long-lived particle signatures arising from dark-sector models

● Search for emerging jets at CMS:
– Signature of emerging jets in detectors
– Background estimation using data-based methods 
– Discussion about the ML-based methods

● Latest results using CMS data†

● Outlook to beyond the EMJ analysis

2 † Search for new physics with emerging jets in proton-proton collisions at √s = 13 TeV (arXiv:2403.01556)

https://arxiv.org/abs/2403.01556


  

Strongly coupled hidden sectors
An alternate proposal for the particle nature of dark matter (DM) compared to the traditional 
“WIMP”-based approach: a dark sector (DS) of particles with a SU(Ndark) interaction.
Let us assume this interaction is “QCD-like” SU(Ndark=3):

● Dark color confinement binds dark fermions 
into proton-like “dark hadron” states
● Stable dark hadrons will be astronomical DM 

candidates 
● Confinement enforces compatibility with 

astronomical constraints
● “Mediator” particles couple to both SM and 

DS, allowing for searches at colliders
● Asymmetric Dark Matter† (ADM) also predicts 

DM v.s. visible matter density (ΩDM ~ 5ΩB‡) in 
cosmology through a process similar to 
baryogenesis

† Review of Asymmetric Dark Matter (arXiv: 1305.4939)    ‡ Planck 2018 results. VI. Cosmological parameters (arXiv: 1807:06209)3

https://arxiv.org/pdf/1305.4939.pdf
https://arxiv.org/abs/1807.06209


  

Dark QCD searches
 

Different phenomenological signatures arise depending on the assumption of 
the dark sector ↔ SM interaction vs. dark sector gauge interactions

 Semi-visible jets Soft unclustered energy 
patterns (SUEP)

4

 Emerging Jets



  

Emerging jets (EMJ) – LLP showering
● Dark sector has color confinement at low-energy scale Λdark 

(generates dark sector particle shower like SM hadronization)
● Dark “pions” (πdark) have masses mSM < mπ,dark ≲ Λdark
● Heavy mediator (Xdark) couples both to SM and dark sector, 

allowing dark pions to decay to SM particles
● Mainly concerned with long-lived particle (LLP) shower 

generated from dark fermion production
● mπ,dark ~ O(1-10)GeV (Shower-like dark sector “jet”)  
● cτπ,d ~ 10-3-1 m (Tracker geometry of LHC experiments)

5 Images from “Emerging Jets” (arXiv:1502.05409)Sketch of mass hierarchy in 
proposed model

Back-to-back emerging jets in detectors

- - Dark sector particle shower
--- SM decay products 

Detector signature:
Energy clusters (jets) with SM 
particles “emerging” from 
vertices far from the collision 
point.
CMS 2016 search: 1810.10069

https://arxiv.org/abs/1502.05409
https://arxiv.org/abs/1810.10069


  

 Flavored dark sector EMJ 
Existing search ‡for EMJ was limited to an “unflavored” model:
● All DS mesons couple to the SM down quark only
● All DS mesons have the same lifetime
A more generic model† will have DS fermions with non-zero 
coupling to different SM quarks through a coupling matrix:

Even if dark mesons have roughly degenerate masses:
● DS mesons now have a lifetime spectrum driven by the SM 

quark mass spectrum
● Detector-level signature: a mix of LLP-displaced, b-displaced, 

and prompt tracks from DS particle shower 

6

Lifetime of dark pions given “diagonal” SM-DS 
coupling matrix (Flavor-aligned model)  

‡ “Search for new particles decaying to a jet and an emerging jet”: https://arxiv.org/abs/1810.10069
† “A flavoured dark sector” arXiv:1803.08080

SM quarks DS quarkSM-DS Yukawa coupling Mediator

effective coupling 
results

Lifetime “jumps”, when heavy 
meson decay paths are turned 
off past SM mass threshold  

πdark are  stable for 
mπ,dark < mb (“Semi-
visible” jets)

Full list of signal model parameters given in backup

https://arxiv.org/abs/1810.10069
https://arxiv.org/abs/1810.10069
https://arxiv.org/abs/1803.08080


  

Detector signature of EMJ
Search strategy:
● Look for mediator pair production, with mediators decaying 

to SM quark (q) and DS quark (Q). 
● SM quarks ensure a reliable trigger is available

● Look for jets containing displaced tracks 
● More resilient to reconstruction deficiencies compared 

with secondary vertex reconstruction
● Transverse/Longitudinal displacement: IP2D / IPz
● SM Background: pileup jets, heavy-flavored jets

● Search space (full list given in backup)
● Mediator mass: mX,dark  (~1TeV-2.5TeV)
● Dark meson mass: mπ,dark (~5GeV-20GeV)
● Dark meson lifetime: 

● Unflavored model: cτπ,dark (1mm-103mm)
● Flavored-aligned model (diagonal Yukawa): κ0 / cτπ,dark,max

77

Primary event signatures: 
4 energetic jets,

2 of which have displaced constituents



  Defining detector signatures  
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The CMS detector

99
“The CMS experiment at the CERN LHC”

cds.cern.ch/record/1129810

Photo by Maximilien Brice

http://cds.cern.ch/record/1129810


  

Particle-flow reconstruction at CMS

1010

Primary vertex
(pp interaction)

Impact parameters

Vertices are clustered and 
fitted by extrapolating 
tracks back to points-of-
closest approach to 
intended interaction point

Impact parameters defined as the 
distance of the track trajectory to 
a primary vertex of interest

“Particle-flow reconstruction and global event description with the CMS detector,” (arXiv: 1706.04965) 

Secondary 
vertex

(in-flight decay)

https://arxiv.org/abs/1706.04965


  

Physics object selection at reconstruction level

Primary vertex
Leading primary vertex (largest† ∑pT2) is always 
used for track displacements calculation 
Additional quality cuts:
● |zPV | < 15 cm
● N(tracks | dz  < 0.01 cm) / N(tracks)  > 0.1

Trigger 
Lowest unprescaled, pure HT trigger
● 2016: HT > 900 GeV
● 2017, 2018: HT > 1050 GeV

Track selection
Standard CMS fitted tracks§

● High-purity fitting flag must be true
● pT > 1.0 GeV 
● Re-associate to jets with angular matching

Jets
CMS anti-kT jet with R=0.4 jets with charge hadron 
subtraction§ (standard “AK4” CMS jet)
● pT  > 100 GeV, |η| < 2.0          (η=-ln(θ/2), θ polar angle)
● At least 1 associated track 
● Standard Jet ID selection

Work with standard CMS reconstructed 
objects; this ensures uncertainties are 
well studied with minimum surprises

11 †  “Primary vertices ordering in CMS”. Details given in link.
§ “Particle-flow reconstruction and global event description with the CMS detector” arXiv:1706.04965.

https://github.com/cms-sw/cmssw/blob/master/CommonTools/RecoAlgos/src/PrimaryVertexSorting.cc
https://arxiv.org/abs/1706.04965


  

Event and object selection
Primary signal topology and energy scale: 
● At least 4 jets with high pT
● Event HT (scalar sum of all jet pT)
● Additional leading jet pT selection
EMJ signature selection:
● At least 2 jets tagged as EMJ using tracks within jet cone
● To avoid displaced tracks from being dropped in 

standard CMS jet clustering algorithm, tracks are 
associated with jets angular matching with the jet 
energy center:
                   ΔR=((Δφ)2+(Δη)2)½ < Rcut

● Key track displacement variables: 
● Transverse impact parameter (IP2D)
● Longitudinal impact parameter (IPz)

12



  

EMJ tagging using standard reconstruction objects
● Tracks associated to jets via ΔR matching to energy centers 
● Attempting to summarize jet-level track displacement measures of associated tracks

13

For Unflavored model with single cτπ,dark 
lifetime,  we use Rcut=0.4 matching 
● Median of |IP2D| of all associated tracks
● pT-weighted prompt track fraction α3D:

with normalized significance

● Maximum |IPz| requirement to reject jets 
from pileup interactions (PU jets)

Example of jet level variable used for unflavored model EMJ tagging
Events only require trigger and 4 jets with pT>100GeV

← SM  …  EMJ → ← EMJ … SM→ 



  

EMJ tagging using standard reconstruction objects (2)

14

● Count of displaced tracks (IP2D >IP2D,cut ):
mixed lifetime of particles in jet cone, but 
b meson are a typical product in prompt 
πdark decay

● Track girth (pT-weighted ΔR)
● “n-subjettiness” computed using tracks

to reduce pileup contamination

Flavored models generate mixed track displacements: this requires us to design a separate 
tagging method. Rcut = 0.8 used for jet track association, as model has wider particle shower 
from both heavier dark meson and heavier SM decay products.

Example of jet level variable used for flavored-model EMJ tagging
Events only require trigger and 4 jets with pT>100GeV

← SM  …  EMJ →  ← SM ... EMJ → 



  

Encoding of points to “image-like” 
graph representation‡

EMJ tagging – Machine Learning (GNN)

“Coordinates” features (for image-like representation)
● Δη, Δφ relative to jet center

● Training features 
● ΔR relative to jet center
● log(pT), log(pT / (∑pT))
● sign(IPxy) ·log(1 + IPxy / 1cm )
● sign(IPz) ·log(1 + IPz / 1cm )

† “ParticleNet: Jet Tagging via Particle Clouds” (arXiv:1902.08570) ‡ “Dynamic Graph CNN for Learning on Point Clouds” (arXiv:1801.07829)15

● Speeds up ML training
● Log function to compress 

unbound parameter values

Employing Graph Neural Networks (GNN) for jet tagging†: encoding discrete, unordered jet constituents 
information into image-like representation; train 2 GNNs for distinguishing between flavor-aligned signal 
model jets v.s. QCD jets (aGNN) and unflavored signal model jets v.s. QCD jets (uGNN)

← SM ... EMJ → 

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829


  

EMJ tagging – Cut point determination

16

Cut values for event selection and tagging determined 
by grid search, optimizing significance:

The “0.1” term is a rough estimate of the expected 
uncertainty that is not counting uncertainty 
● Optimization is performed for all signal model 

surveyed
● Cut values are grouped to reduce the number of 

calculations required
● Full cut values can be found in following slides

Signal acceptance as a function of model parameters, 
numbers in the cell indicate different cut sets used



  

EMJ tagging – Cut point values

17

Example of cut values using cut-based EMJ tagging
HT (>) [GeV] Jet pT (>)[GeV] Rcut |dz| (<) [cm] Med[|dxy|] (>) [cm] DN,cut α3D (<)

u-set 1 1600 275, 250, 250, 150 0.4 0.5 10-1.6 4 0.25

u-set 2 1600 200, 200, 150, 150 0.4 2.5 10-1.4 8 0.25

u-set 3 1600 200, 150, 100, 100 0.4 5.0 10-1.2 8 0.25

u-set 4 1500 200, 150, 100, 100 0.4 5.0 10-1.2 12 0.15

u-set 5 1200 200, 250, 100, 100 0.4 5.0 10-1.0 12 0.15

HT (>) [GeV] Jet pT (>)[GeV] Rcut |dz| (<) [cm] |dxy|,cut (>) [cm] girth N(dxy>dxy,cut)

a-set 1 1500 200, 150, 100, 100 0.8 0.5 10-2.2 0.05 12

a-set 2 1800 250, 250, 200, 200 0.8 0.5 10-2.2 0.10 12

a-set 3 1200 275, 250, 250, 200 0.8 0.5 10-2.2 0.10 12

a-set 4 1500 275, 250, 250, 100 0.8 0.5 10-2.3 0.00 14

a-set 5 1800 200, 100, 100, 100 0.8 0.5 10-2.4 0.10 14



  

EMJ tagging – Cut point values

18

Example of cut values using GNN tagging

HT (>) [GeV] Jet pT (>)[GeV] Rcut u-GNN score (>)

uGNN set 1 1350 170, 120, 120, 100 0.8 0.997

uGNN set 2 1750 300, 260, 250, 250 0.8 0.998

uGNN set 3 1800 240, 180, 180, 100 0.8 0.996

HT (>) [GeV] Jet pT (>)[GeV] Rcut a-GNN score (>)

aGNN set 1 1300 200, 140, 120, 100 0.8 0.9953

aGNN set 2 1650 300, 250, 200, 200 0.8 0.9993

aGNN set 3 1400 270, 220, 220, 120 0.8 0.9983

In general, GNN yields higher signal acceptance. 
More discussion on the implications of ML will be given later!



  

Data Simulationv.s.

More Data

Why data-based methods?  



  

Challenges – sources of displaced tracks

● Pile-up tracks contamination
● Detector resolution effects

SM hard-scattering process:
● Heavy mesons production

Background events from SM jets being mistagged as EMJs from various displaced track sources 

20

● Material interaction
“Random” sources

ɣ
e+

e
-

RECO-vertex position with no filter

Image by Nazar Bartosik

0.05cm

QCD MC 1:45241:56551222

19 vertices spread  determined 
by tracking resolution

Private work

https://commons.wikimedia.org/wiki/File:B-tagging_diagram.png#/media/File:B-tagging_diagram.png


  

Background estimation – mistag rate evaluation
● How much do we trust MC to get randomness right? 
● How much do we trust MC to get mistag rate dependence correct? 
● Can we try to evaluate EMJ mistagging in data?

● Can we reliably extract the jet variable dependence of mistagging?

21 Mistag rate evaluated using QCD MC jets

Example unflavored mistag 
rate using cut-based tagging



  

Background estimation – mistag rate evaluation
● How much do we trust MC to get randomness right? 
● How much do we trust MC to get mistag rate dependence correct? 
● Can we try to evaluate EMJ mistagging in data?

● Can we reliably extract the jet variable dependence of mistagging?

22 Mistag rate evaluated using QCD MC jets

Example flavor-aligned mistag 
rate using cut-based tagging



  

Background estimation – mistag rate evaluation
● How much do we trust MC to get randomness right? 
● How much do we trust MC to get mistag rate dependence correct? 
● Can we try to evaluate EMJ mistagging in data?

● Can we reliably extract the jet variable dependence of mistagging?

23 Mistag rate evaluated using QCD MC jets

Example unflavored mistag 
rate using GNN tagging



  

Background estimation – mistag rate evaluation
● How much do we trust MC to get randomness right? 
● How much do we trust MC to get mistag rate dependence correct? 
● Can we try to evaluate EMJ mistagging in data?

● Can we reliably extract the jet variable dependence of mistagging?

24 Mistag rate evaluated using QCD MC jets

Example flavor-aligned mistag 
rate using GNN tagging



  

Standard model

Signal (?)

Signal 
region 

Control 
region (?)

Control 
region (?)

Defining control regions  



  

EMJ mistagging in data – Construction of FR

-triggered data stream (“SinglePhoton”)Ɣ

Offline jet selections (pT > 100GeV)

b-enhanced region
εE(pT), BE(pT)

b-suppressed region
εR(pT), BR(pT)

“Extra” jet (pT > 50GeV)

Extra jet 
b-tagged

Extra jet 
b-vetoed

Signal-free region (FR) constructed using -triggered data ɣ
stream with high-pT photon (>200GeV)
All jets in this region are assumed to be from SM processes
● Mistag rate can be evaluated as a function of jet 

kinematics just by running the tagging algorithm
● For determining flavor dependence, we split the region 

by b-tagging results of extra jet; b jet fraction of 
“primary” jets is shifted without explicit kinematic cuts 
on primary jets

● Mistag rate of primary jets follows linear relation:

Relation can be inverted to obtain 
flavor-dependent mistag rate!

26



  

EMJ mistagging in data – Construction of FR
● εX(pT) : flavor-blind mistag rate evaluated in region X
● BX(pT): estimated b-jet fraction of region X
● εinv(f, pT): flavor-dependent mistag rate from inversion
● εtruth(f, pT):flavor-dependent mistag rate from MC truth

Measured in data Calculated by inversion

= x

27

Private workPrivate work Private work



  

EMJ mistagging in data – Construction of FR
● εX(pT) : flavor-blind mistag rate evaluated in region X
● BX(pT): estimated b-jet fraction of region X
● εinv(f, pT): flavor-dependent mistag rate from inversion
● εtruth(f, pT):flavor-dependent mistag rate from MC truth

Measured in data Calculated by inversion

= x

Calculating b jet fraction by fitting to CMS 
b discriminator distributions.

28

Private work Private work



  

Background estimation – scale factor method
HT-triggered data stream “JetHT”

Event/Jet kinematic selection

Signal Region (SR)
S = Ssig + SSM

Control Region (CR)
C=(Csig) + CSM

≥ 2 EMJ = 1 EMJ

Evaluation of mistag rate can be used to map 
control region events (C) to signal region 
background (SSM) by some scale factor calculated 
from mistag rates SF({εj}) 

CSM  ≫ Csig

Assuming that SM jets in SR/CR is identical, we 
can work out SF to be:

29 Full calculation will be given in backup slides

×SF
ε1 (?)

ε2 (?)

ε3 (?)

ε4 (?)

≥ 1 EMJ ≥ 2 EMJAll events

Factor of ½ comes from 
combinatorical factor (see right) 

Sketch of ½ factor, 
approximation holds true if 
N≥1EMJ ≫ N≥2EMJ (i.e. εj ≪ 1)



  

Scale factor method – flavor assignment
The mathematical formula for scale factor SF({εj}) is only 
true if EMJ mistagging of jets within an event is 
uncorrelated up to mistag rate parameterization ε(f, pT)

 
In practice, since it is difficult to parameterize jets in 
“flavor” when calculating SF, a flavor-averaged mistag 
rate would be employed for calculation:

where BCR  is the estimated b jet fraction of the non-
tagged jets in the CR

30



  

Background estimation – notations

S: Where the SR/CR is constructed
● HT-triggered data (“JetHT”)
● QCD (MC)

F: Where the mistag rate is calculated
● Photon-triggered data “SP”
● QCD (MC)
● GJets (MC)

α: How flavor assignment is performed 
in SF calculation
● MC truth
● Flavor-averaged (“avg.”)

β: How flavor dependence is evaluated
● MC truth
● Linear relation inversion (“inv.”)

Lots of moving parts to keep track of…

Background estimation for fully data-based calculation: 
Alternate results will be used for uncertainty evaluation

31

CR × SF = 



  

 Uncertainty 
v.s.

Limitations of data-based methods  



  

Data-based methods – limitations

Mathematically correct

Calculable using just data
33

SM Jet cannot to isolated in 
signal-like region

Using MC counter parts to 
estimate uncertainties at 
each stage 

Jet flavor is not perfectly 
known in data

Mistag rate jet variable dependence 
cannot be arbitrarily parameterized



  

 

Data-based methods – limitations (2)
“A control region that eliminates exactly one physics process cannot exist”

Cannot split out just SM jets in JetHT stream, so we use the 
SinglePhoton data stream, but jet kinematics are fundamentally 

different in the two data sets.

Most mathematically correct

Calculable using just data
34

While data and MC do not perfectly match, QCD/GJets discrepancies 
capture primary features of HT/ -triggered data set differencesɣ
MC events used to estimate impact on final estimation

v.s.

Private work Private work



  

Data-based methods – validation using MC

Q: How can we be sure our background estimation 
calculation is correct?
A signal-free data stream should have SM events 
perfectly match SR = CR×SF calculation  
● SM MC events as stand-in for data events:

● HT-triggered data → QCD MC
● -triggered data → Gjets MCɣ

● Run calculation on MC identically as what will be 
performed on data

Since SM MC is by definition “signal free”, we can 
compare SR events (black points) to CR×SF results 
(color points) up to uncertainties

All cutsets closes within uncertainty
35

Private work



  

Data-based method – validation using data
● Validation “SR/CR” pairs constructed using HT-

triggered data stream with cut values designed to 
be signal diluted in validation “SR”:
● Cut-based strategy:

● Relax EMJ tagging requirements (Ssig ≪ SSM)
● Invert HT requirements: HT< 1200GeV (Low 

mX,med models excluded by CMS 2016 results)
● GNN strategy:

● Side-band GNN score value for tagging
● Relax HT /Jet pT selection criteria

● Signal contribution in these “SR” definitions is 
expected to be < 1% of total events

● Same calculation as what will be used for primary 
SR/CR calculations

36
All cutsets closes within uncertainty



  

Signal modeling MC uncertainties

37

● MC track reconstruction 
modeling

● Luminosity 
● Trigger efficiency
● Pileup
● Jet energy corrections 

and resolutions
● PDF/αS

Tracks in MC typically have too good of a resolution when compared with 
data: remedied by injecting randomness to IP2D and IPz of MC tracks such that 
the final distribution matches data. 
● Distribution obtained with only trigger selection, evaluated per year
● Correcting small displacement resolution effects

● Additional discussion given in backup 

Private Work Private Work



  Opening the box… 



  

Results from arXiv:2403.01556

No significant excess was observed. 
Interpreting results as setting an upper 
limit on dark mediator production cross 
section



  

CLs limit – extending sensitivity using Run 2
CMS results are preparing for publication! Getting a comparison with the existing CMS results 
by computing CLs limit with expected background using MC samples.
● Cut-based analysis limit reach extended by ~300GeV in mX,Dark
● GNN performs better in general, particularly for low lifetime models (more discussions later!)

40



  

GNN resultsModel-generic

CLs limits – flavored DS models
First look at the sensitivity to flavored EMJ models at CMS!
● Flatter cτ dependencies compared with unflavored, fixed-displacement signatures

● Tension between which signature the detector is sensitive to: 
Longest lifetime particles v.s. SM heavy meson production

● GNN performs “better” than the model-generic approach

41



  

Improvements since 2016

Comparison of new limits with previous CMS 
search (16.8fb-1 , 2016)
● Poor limit reach at large cτπ,dark  is to be 

expected (no tracker-based signature)
Model-generic method: Slight boost in limit 
reach
● Slightly higher HT, jet pT selection 

thresholds
● More detailed uncertainty studies
GNN-based method: “Is ML better at 
selecting ‘signature’ or better a selecting 
‘model’?”

42

Private work



  Interrogating ML results 



  

What is an “EMJ” to the GNN?

Attempt to extract “what” the GNN is 
attempting to learn: reorder singular 
track variables in collection
● Ensures distribution of input 

variables are unchanged
● Decorrelate one single variable from 

all other inputs
● Check which variable impacts the 

GNN output the most (using ΔAUC 
measure, the change in area under 
ROC curve)

44

Private work Private work

IP2D is still the most important feature used in the GNN
● The GNN indeed looks for displacement signatures.
● But what is it doing differently at lower mass points?



  

What can be mistaken to be an EMJ?
Take a look at variable shifts before and after GNN 
score selection.
● Signal jet distribution shifts very little (expected, 

since signal selection efficiency is high)
● SM background jets have significant shifts:

● GNN-tagged jets have large displacements 
(target signature)

● GNN-tagged jets have wider jet shower!
● See the wider ΔR distribution and the 

smaller pT fraction distribution
● Double checking 2D distribution, this jet 

showering is primarily used for small IP2D 
tracks

● Consequence training GNN using heavy DS 
mesons masses

45

Private work

Private work

Same distribution shift 
projected onto 
different variable axes



  

Can the GNN be tricked?
Would there be cases where the GNN can be tricked to 
yield false negatives? 
● Comparing the GNN performance on samples not 

used for training (mπ,dark =1GeV, unflavored) shows a 
clear degradation in the GNN performance, even 
with a clear “emerging jet” signature (cτdark = 45mm).

● Is this a feature or a bug?
● For flavored DS models, mπ,dark models are 

constrained by flavor-changing neutral current 
observations. This class of model will likely have a 
larger mπ,dark, which should be used as a target 
signature.

● For a generic BSM signatures, this is not 
necessarily desirable (The “alignment problem” 
of using ML tools)

46



  Summary  



  

Summary of EMJ analysis

48

● Presented current work for searching for the EMJ signatures in CMS
● Defined and explored variables useful for defining jet displacement measures
● Explored the distinguishing power of a ML-based jet tagging techniques

● Presented sensitivity using fully data-based method for estimating SM background 
● First look at flavored dark sector sensitivity using CMS data
● Extending sensitivity of unflavored scenario by mediator mass ~300GeV (~500GeV) 

compared with previous CMS results
● Results are now officially public, submitted to JHEP



  Beyond the EMJ analysis 



  

Collision vertex Neutral LLP

Displaced track

Calorimeter 
energy clusters

Brief summary of complementary analyses

50

Phenomenological complements  

Trackless Jet
CMS analysis: EXO-21-014 (arXiv:2212.00695)

Showers in 
Muon chambers

CMS EXO-21-008 
(arXiv: 2107.04838)

https://arxiv.org/abs/2212.06695
https://arxiv.org/pdf/2107.04838.pdf


  

Brief summary of complementary analyses

51

Alternate dark sector scenarios

Semi-visible jets
CMS analysis: EXO-19-020 (arXiv:2112.11125)
ATLAS analysis: (arXiv:2305.18037)

Soft unclustered 
energy patterns 

(SUEPs)

Non boosted event

Boosted event with recoil jet:

https://arxiv.org/abs/2112.11125
https://arxiv.org/abs/2305.18037


  

Outlook to CMS Phase-2 upgrade

52 Summary presentation taken from CMS week



  

Personal works with HGCAL

53

HGCAL attempts to greatly boost spatial 
resolution in end-cap region with high-
granularity layout (from CE-TDR)

3cm

Development of automation system 
to calibrate SiPM across entire 
dynamic range of SiPM model

Low-light “photon-
counting” mode

High-intensity 
nonlinear response

Place under 
fast light source

Fast (<1ns) 
light source

https://cds.cern.ch/record/2293646


  

Outlooks to future efforts at colliders

54

● Long-lived particle searches continue to be of great interest!
● Alternate beyond standard model theories with parameter space previously unconstrained
● Predicted phenomenological signatures challenge many existing analysis paradigms

● Continued efforts from experiments to enable exotic signature searches:
● Dedicated object trigger (Run 3 and ongoing)
● Timing layer for additional particle in-flight information (Phase 2)
● Higher resolution and coverage many subsystems (Phase 2)

Our analysis We are here!

Phase2 upgrade  →

Timeline from HL-LHC project

https://hilumilhc.web.cern.ch/sites/default/files/HL-LHC_Janvier2022.pdf


  

Thanks for you attention!



  

Backup slides



  More details on the EMJ analysis 



  

Full list of survey EMJ signal models

58

Unflavored model: 
Assuming SU(Ndark=3) QCD-like interaction, number of dark fermions Nf=7 with degenerated mass, and 
couples exclusively to SM down quark. Samples a full grid on the following 3 free parameters:
● mdark [GeV]: 10, 20
● MX,dark [GeV]: 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2400, 2500
● cτπ,dark [mm]: 1, 2, 5, 25, 45, 60, 100, 150, 225, 300, 500, 1000 

Flavor-aligned model: Assuming SU(Ndark=3) QCD-like interaction, number of dark fermions Nf=3 with 
degenerate mass, and couples with SM down-type quark (d, c, b) with a diagonal Yukawa matrix with 
common term κ0, the longest-lived lifetime and we can calculate this as:

We scan over 3 free parameters: mdark, MX,dark, κ0, such that cτπ,dark,max falls on the following grid values:
● mdark [GeV]: 6, 10, 20
● MX,dark [GeV]: 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2400, 2500
● cτπ,dark [mm]: 5, 25, 45, 100, 500 (κ0=1)

Generation for EMJ samples using pythia can be found here: https://gitlab.cern.ch/cms-emj/emj-production

https://gitlab.cern.ch/cms-emj/emj-production


  

CMS MINIAOD equivalent objects

59

● HLT trigger paths:
● JetHT datastream@2016 HLT_PFHT900_v* | HLT_PFJet450_v*
● JetHT datastream@2017, 2018, HLT_PFHT1050_v*
● SinglePhoton datastream@2016 HLT_Photon165_HE10_v*
● SinglePhoton datastream@2017, 2018 HLT_Photon200_v*

● Primary Vertex collection: “slimmedPrimaryVertices”
● IsGood && !isFake()

● Tracks collection (extracted from “packedPFCandidate” collection)
● AK4 Jets “slimmedJets”

● JetID == 1
● DeepFlavor variable for b jet tagging and distribution fitting



  

Background estimation – Scale factor details (1)
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Consider all background events with 4 jets of interest, each jet having independent probability ϵj of 
being mistagged as an EMJ. The fraction of jets with N EMJ-tagged jet P(N), can be calculated by 
combinatoric:

● Factors of (1/n!) appear from the use of an unordered 
sum (∑i≠j instead of something like ∑j>i)
The use of unordered sum will be important later

● If the CR/SR comparison of interest uses the NEMJ=0 and 
NEMJ≥1, then the scale factor of interest will be 
calculated as:



  

Background estimation – Scale factor details (2)
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Since our control region of interest also has 1 least 1 EMJ tagged jet, the calculation from the 
previous page should has take a subset of conditional combinatorics. Let us label the EMJ-tagged jet 
index as T, and the fraction of events with N EMJ-tagged jets as Q(N)

● Unordered sum allows us to quickly extract the 
subset of combinatorics where the T-th jet is EMJ 
tagged. 

● Since the CR/SR comparison of interest uses the 
NEMJ=1 and NEMJ≥2, the scale factor of interest will be 
calculated as:



  

Background estimation – key requirements
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In the calculations of SF, we have only labeled mistag rate as ϵj  for each jet in the 
event for convenience. In actuality, mistag rate is shown to be a function of the 
various jet variables (pT, η, ntracks… etc). The use of simple, unweighted  
combinatorics when calculating SF is only correct if the follow two assumptions 
are true:
1) The Mistag rate of jets within the same event is uncorrelated up to the 

parameterization of the mistag rate ε(θ)
2) The jets parameters used for mistag rate can be correctly assigned for each jet

Neither of the assumptions is strictly true for what can be reasonably obtained 
in the the data-based calculation. We should then carefully evaluate the optimal 
methods of getting correct results in our calculations, and assign appropriate 
uncertainties.



  

Updating the analysis – ε parameterization

63

Since correlation in jet flavor is an irreducible, 
physics-based correlation from the hard-scatter 
process, we opt to always choose to parameterize 
mistag rate as ε(f,ν) where ν is some jet kinematic 
variable. The parameter ν is then chosen taking into 
account the following criteria:
● Which variable best encapsulates the mistag rate 

correlation? 
● Which variable dependence is “physics driven”?

● Has irreducible factors, flavor dependence?
● Best encompasses the potential physics 

differences between the HT data stream, and 
the γ-triggered data stream? 

Simple numerical experiment demonstrate the 
steep ntrack dependence of u-tag* taggers can be 
driven purely by the median algorithm (“central 
median theorem”)



  

Updating the analysis – jet flavor assignment
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The flavor averaged methods only strictly works when 
the SR and CR has similar b jet fractions. The calculation 
is known to fail if we attempt a (NEMJ=0) → (NEMJ≥2) SF 
calculation (b jets typically comes in pairs from gluon 
splitting). In an attempt to solve this, a per-jet flavor 
assignment using Bayesian inference with b-tagging 
result was attempted. 

Assuming the underlying flavor being U, and the b 
tagging results T, we can attempt to calculate P(U|T) 
from P(T|U) using Bayes theorem, and weigh the scale 
factor results with an assumed underlying flavor. This 
attempt ultimately failed, because b-tagging results will 
have significant shifts in distribution after imposing 
additional jet-level selections.

Difference of the b jet tagging rates for b jets and light jets 
after imposing a 1 EMJ tagging request

Private work



  

Updating the analysis – pTmiss  selection
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In the previous analysis, we attempted to 
boost signal sensitivity using a minimum 
pTmiss requirements. This was found to 
significantly shift the jet population, 
meaning that the uncertainty will be much 
larger when comparing mistag rates 
evaluated in γ-triggered data sets.

Ultimately, the limit gain was limited, so we 
opted to remove this event selections.

Larger pTmiss for long 
lifetime models

Mismatch in distribution due to 
imperfect SM MC modeling

Significant shift in jet 
constituent when imposing 
pTmiss requirement

Shift also seen in 
jet variables used 
for EMJ tagging

Private work

Private work

Private work



  

Data-based methods – variable choice uncertainty

SF calculation assumes simple combinatorics, and is only strictly 
correct if we can parameterize ε in arbitrary fine parametersMost mathematically correct

Calculable using just data
66

Despite the steeper apparent dependence, we choose to parameterize  ϵ
in pT, as it better reflects tagging correlation driven by physics. An 
uncertainty should be associated with this choice. 

Private work



  

Data-based methods – event-level oddities

SF calculation assumes simple combinatorics, and is only strictly 
correct if we can parameterize ε in arbitrary fine parametersMost mathematically correct

Calculable using just data
67

Additional vertex/jet quality parameters are imposed to avoid 
catastrophic event reconstruction failures where all jets in an event 
appears “displaced”

Private work Private work



  

Data-based methods – flavor correctness

Flavor information is not directly available in data: there can be errors 
in flavor dependence evaluation

Most mathematically correct

Calculable using just data
68

MC events are used to estimate potential differences, where we can 
compare direct and indirect flavor computations.



  

Track modeling uncertainty

69

While MC is used to guide the analysis choices, the final analysis results will use a fully data-based 
approach. This means that discrepancies between data and MC samples are less critical for the 
evaluation of background contamination, but potential impacts to calculation routines should be 
carefully evaluated

SM background 
● Detector effect discrepancies (resolutions, efficiency) 

● Correctness is handled by the data-based estimate
● Final selection cut values might be suboptimal
● No additional actions will be done for a search 

analysis
● Physics-driven uncertainty (missing physics in MC set)

● Does this introduce tagging correlations? If no, this 
will be largely handled by the data-based estimate

● Non-QCD processes expected to contribute <0.1 
event for all cut sets. No additional action will be 
taken

Signal events
● How much does it change the signal selection 

efficiency?
● Can we give estimate such discrepancies?

● This is usually handled by the the CMS 
physics object groups

● The only nonstandard discrepancies are the 
track displacements measures



  

Track modeling – small displacement effect
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For tracks with small displacements (<10-1 cm), we expect that the tracking algorithm has nearly 
100% reconstruction efficiency, the differences between data and MC are mainly driven by 
track/vertex resolution effects. This is what is used as an analysis uncertainty presented in the 
main presentation

Private work Private work



  

Track modeling – large displacement effect
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For large displacements effects, two effects may drive data/MC discrepancies:
● Missing physics processes: generation of heavy flavor mesons, or potentially signal effects

● Data/MC needs to be evaluated in signal-free region (using photon-triggered data stream)
● Reconstruction efficiency effects
Reconstruction efficiency is very difficult to evaluate in data, 
we use the normalized IPxy distribution in data/MC and 
assume:
● Reconstruction efficiency with IPxy <0.1cm is 100%
● Event-level track multiplicity distribution as a function of 

IPxy is only caused by reconstruction efficiency mismatches
● Perform a track-level reweighting when computing 

displacement measure
● Signal efficiency was found to at most be impacted by 2%, 

with the typical change being ~0.3%

No additional uncertainties are 
included in the final calculation 

Over-pessimistic estimated of data/MC 
reconstruction efficiency differences as 
a function of track IP2D 

Private work



  

Interesting consequence of material interaction
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● Material interaction generates tracks with 
peaking structures in the IP2D × pT 
spectrum (only on the positive side!) 

● Purely geometrically result!  
● Argument is given in the diagram below
● Peaking features can be isolated by 

limiting tracks with particular hit patterns

Detector 
material 

High-energy photon 
trajectory

Generated 
charged particle

Private Work



  

Additional signal systematics calculated

73

● MC track reconstruction 
modeling

● Luminosity 
● Trigger efficiency
● Pileup
● Jet energy corrections 

and resolutions
● PDF/αS

● Relative trigger efficiencies calculated compared to HLT_Mu50
● Evaluated data/QCD MC difference evaluated per-data collection era

Private work Private work



  

Additional signal systematics calculated
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● MC track reconstruction 
modeling

● Luminosity 
● Trigger efficiency
● Pileup
● Jet energy corrections 

and resolutions
● PDF/αS

● Other effects uses POG provided correction values
● Shift kinematic/event weights by ±1σ, and compare the variation in final 

event count 
● Summary of signal systematics below (units in %) model-agnostic/GNN

Unflavored model Flavor-aligned model

mean std. mean std.

MC track modelling 0.2/0.3 0.3/0.8 1.4/0.5 1.8/0.6

Pileup reweighting 1.6/0.9 1.4/0.8 1.4/1.0 1.2/0.9

JEC 1.0/1.3 1.3/0.9 0.8/0.7 0.7/0.4

JER 0.3/0.2 0.4/0.3 0.3/0.2 0.3/0.1

Trigger efficiency 0.3 0.1 0.3 0.1

Luminosity 1.8 0.6 1.8 0.6

PDF variation <0.1 <0.1 <0.1 <0.1

Matrix element scale <0.1 <0.1 <0.1 <0.1



  

More discussion on sensitivity (Flavor-aligned)
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Common Question: why is the sensitivity of the flavor-aligned “better” 
at long lifetimes and poorer at the center of the volume tracker?
● Recall that tagging feature aimed at displaced track multiplicity, with 

“displaced” set at around b-meson scale
● cτmax,dark  is parameterized by the longest lifetime dark meson, b-meson 

producing dark mesons have lifetime 10-4 compared with this:
● There is tension between longest lifetime SM products being 

generated outside the tracker volume, and b-meson producing 
signatures generating distinguishable displaced signatures

● Similar sensitivity curve using GNN tagging indicates that the model-
agnostic feature is not missing any simple features that can boost 
sensitivity.

● For this analysis, we have demonstrated the flatter dependence on 
coupling strength. 
● Is it worth it so scan a wider region in parameter space? That would 

be a good question for Run-3 analyses with newer modelling



  More details on GNNs 

Original use-case for GNNs: 3-dimensional object classification (arXiv:1801.07829)

https://arxiv.org/abs/1801.07829


  

Detailed description of the GNN topology
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† “Dynamic Graph CNN for Learning on Point Clouds”,  arXiv:1801.07829

Topology of GNN network used for jet 
tagging. (From arXiv:1902.08570) 

● A “edge convolution” layer graph encodes spatial 
“point-like” information into a dense “image-like” 
information suitable for CNN inference†

● Suitable for jet classification, as jets are a sparse 
list of objects belonging the same cluster

● Now serving as the ParticleNet b jet tagger used 
for standard b tagging in Run 3 @ CMS

https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1902.08570


  

Training and validating the GNN
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1) Jets-track clustering is ran with Rcut<0.8 
association scheme for events passing trigger 
requirements in QCD and signal samples

2) Jets classified using truth information as 
unflavored signal/flavor-aligned signal/SM jets 
● All signal samples of the same model are 

grouped into the same class of jets together
3) QCD jets selected to match the number of signal 

jets used
4)  60% of used for training, 15% used for validation, 

25% used for calculate model performance

Private work



  

Comparing the GNN performance
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● Comparing the ROC curve, the 
GNN performance is better than 
the cut-based taggers

● Performance varies with lifetime:
● Unflavored model: significant 

degrading for long lifetime 
(expected)

● Flavor-aligned model: more 
uniform performance, “best” 
performance is towards longer 
section (see discussion 
regarding flavored model limit 
sensitivity)



  

Checking GNN input
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Comparison of variable correlation can also serve to distinguish what features may be important to the GNN. 
Large correlation differences can be an indication that these variables can be used for distinguish jet types
● pT fraction and angular width driven by physics processes: 

Hadronic showing v.s. DS showering v.s.  DS→SM showering

Flavor-aligned EMJUnflavored EMJSM jets in QCD MC

Private WorkPrivate workPrivate work


