EXscalar - New exotic scalars Focus topic introduction and status report Aleksander Filip Żarnecki Faculty of Physics, University of Warsaw

EXscalar - focus topic planning meeting March 15, 2024

A.F.Żarnecki (University of Warsaw)

EXscalar - introduction and status report

March 15, 2024

Main deliverable

exact timescale still unclear

Final study report

Physics Potential of a Higgs / Top /EW Factory

All WG1 Coordinators and Subgroup Conveners Many...

Abstract

This documents summarizes the work of the Physics Potential Working Group of the ECFA Study on Future Higgs / Top / Electroweak Factories.....

Keywords

Higgs Boson, Top Quark, Electroweak Physics

1 Introduction

A.F.Żarnecki (University of Warsaw)

A.F.Żarnecki (University of Warsaw)

Т

Focus topics

Selected in order to stimulate new engagement and trigger additional activities in areas where further work would be still be beneficial...

arXiv:2401.07564

			\sqrt{s} [Gev]				
opic		Lead group	91	161	240 - 250	350 - 380	≥ 500
1	HtoSS	HTE			\checkmark	\checkmark	\checkmark
2	ZHang	HTE (GLOB)			\checkmark	\checkmark	\checkmark
3	Hself	GLOB			\checkmark	\checkmark	\checkmark
4	Wmass	PREC		\checkmark	\checkmark	\checkmark	\checkmark
5	WWdiff	GLOB			\checkmark	\checkmark	\checkmark
6	TTthres	GLOB (HTE)				\checkmark	\checkmark
7	LUMI	PREC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
8	EXscalar	SRCH			\checkmark	\checkmark	\checkmark
9	LLPs	SRCH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
D	EXtt	SRCH				\checkmark	\checkmark
1	CKMWW	FLAV		\checkmark	\checkmark	\checkmark	\checkmark
2	BKtautau	FLAV	\checkmark				
3	TwoF	HTE (PREC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	BCfrag and Gsplit	PREC (FLAV)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

/ IC . 1/1

Motivation

Precision Higgs measurements are clearly the primary target for future Higgs factory.

At 250 GeV we will focus on H_{125} production

But production of additional, light exotic scalar states is still not excluded by the existing data!

Motivation

Benchmark points consistent with current experimental and theoretical bounds

Two-Real-Singlet Model thanks to Tania Robens see arXiv:2209.10996 arXiv:2305.08595 Two Higgs-Doublet Model thanks to Kateryna Radchenko thdmTool package, see arXiv:2309.17431 Minimal R-symmetric Supersymmetric SM

thanks to Wojciech Kotlarski arXiv:1511.09334

There are also some 'hints' from LEP and LHC, see eg. ${\sf arXiv:}2203.13180$

as defined in the focus topic report arXiv:2401.07564

Theoretical and phenomenological targets (1)

Higgs factories are best suited to search for light exotic scalars in the process:

 $e^+e^-
ightarrow Z \phi$

Production of new scalars can be tagged, independent of their decay, based on the recoil mass.

We should look for different scalar decay channels e.g. $b\bar{b}$, $W^{+(*)}W^{-(*)}$, $\tau^+\tau^-$ or invisible Non-standard decays channels of the new scalar should also be looked for.

For maximum sensitivity, feasibility of including hadronic Z decays should be explored.

as defined in the focus topic report arXiv:2401.07564

Theoretical and phenomenological targets (2)

As as second benchmark scenario for the EXscalar focus topic, light scalar pair-production in 125 GeV Higgs boson decays is proposed:

 $e^+e^- \rightarrow Z H \rightarrow Z \phi \phi$

Here again, different decay channels should be considered, both SM-like and exotic.

While new scalar states could in general be long-lived, only scenarios with prompt decays are included in this focus topic (while a dedicated topic focuses on LLPs, see next presentation).

Previous studies

Prospects for new scalar observation in scalar-strahlung process... Decay mode independent search

Reconstructed recoil mass spectra for $e^+e^-
ightarrow Z \; S^0
ightarrow \mu^+\mu^- + X$

Expected sensitivity (relative to SM-like Higgs boson production rate)

Decay mode dependent search

CLIC fast simulation study assuming invisible scalar decays arXiv:2002.06034 arXiv:2107.13903

Reconstructed recoil mass spectra

for hadronic Z decays

compared with decay independent limits from LEP and ILC

Decay mode dependent search

Estimated prospects for new scalar discovery in $S \rightarrow b\bar{b}$ decay channel (LEP projection)

Expected 95% C.L. limits on the scalar production cross section σ/σ_{SM} assuming standard BRs

arXiv:1801.09662

Light scalar search in H_{125} decays

New scalar production in 125 GeV Higgs decays \Rightarrow sensitivity via invisible decays (?)

Expected 95% C.L. limit for $2 ab^{-1}$ collected at 250 GeV ILC: 0.23%

arXiv:2002.12048

Light scalar search in H_{125} decays

New scalar production via exotic 125 GeV Higgs decays - generator level only

95% C.L. upper limit on selected Higgs Exotic Decay BR

arXiv:1612.09284

New studies

Decay dependent search

Search for exotic scalar decays to tau pair, $S \rightarrow \tau \tau$ (fast simulation study)

New studies

Decay dependent search

Cross section limits for $\sigma(e^+e^- \rightarrow ZS) \cdot BR(S \rightarrow \tau\tau)$ compared with decay independent limits on σ/σ_{SM} from earlier studies

Targeted analysis results in order of magnitude increase in sensitivity...

Possible gain in discovery reach depends on the BR!

Preliminary results presented at EPS-HEP'2023, work in progress...

New studies

Decay dependent search

Search for exotic scalar decays to b-quark pair, $S \rightarrow b\bar{b}$ (fast simulation study)

First results, work in progress...

A.F.Żarnecki (University of Warsaw)

Decay mode independent search

• current results based on $Z \rightarrow \mu\mu$ channel. Could be improved by using hadronic decays? ILD plans to resume full simulation study, using the most up-to-date samples and tools

Decay mode independent search

• current results based on $Z \rightarrow \mu\mu$ channel. Could be improved by using hadronic decays? ILD plans to resume full simulation study, using the most up-to-date samples and tools

Decay mode dependent search

- scenarios with invisible scalar decays, $BR(S \rightarrow inv) \approx 100\%$ could be a simple extension of the decay mode independent study ?
- other SM-like scalar decays like $S o \gamma \gamma$ or $S o W^{(*)}W^*$

Other production channels:

• scalar production in SM-like 125 GeV Higgs boson decays example model exists, signal samples could be easily produced

Other production channels:

• scalar production in SM-like 125 GeV Higgs boson decays example model exists, signal samples could be easily produced

Not exactly in the focus topic description:

• light scalar production in Z boson decays (?!) $e^+e^- \rightarrow Z \rightarrow S \ Z^*/\gamma^*(\rightarrow f\bar{f})$ or $e^+e^- \rightarrow Z \rightarrow S \ \gamma$ small contribution of "radiative return" events visible in 250 GeV Whizard simulation

Other relevant issues

When collecting results for the final report we should also try to address the following:

- what are the main experimental challenges
- what is the impact of the key detector performance parameters
- role of polarisation
- systematic uncertainties from SM/BSM theory predictions (SM parameters)
- systematic uncertainties from experiment

Let us discuss...

A.F.Żarnecki (University of Warsaw)

EXscalar - introduction and status report

March 15, 2024

18/19

Expert team

Responsible WG1-SRCH convener: A. Filip Żarnecki WG1 coordination contact: Jenny List

- FCCee contact: Sven Heinemeyer
- ILD contact: Mikael Berggren
- CLIC contact: A. Filip Żarnecki
- Theory contact: Tania Robens
 - Nikolaos Rompotis (ATLAS)
 - Abdollah Mohammadi (CMS, C³)