

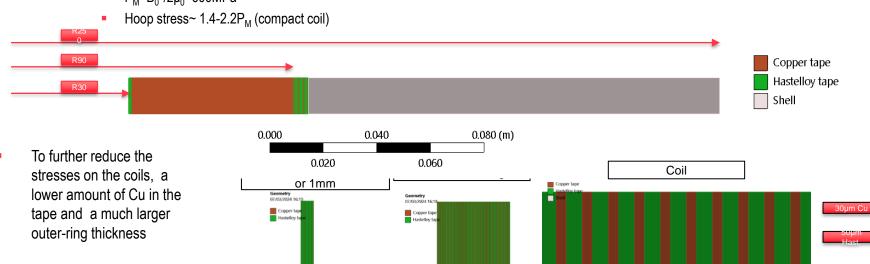
Structural analysis of Final Cooling Solenoid Coil

C. Accettura,
With several contributions from A. Bertarelli, B. Bordini, L. Bottura, A
Dudarev, A. Kolehmainen, F. Sanda

September 2024) · Indico (cern.ch)
20/09/2024, CERN

Index

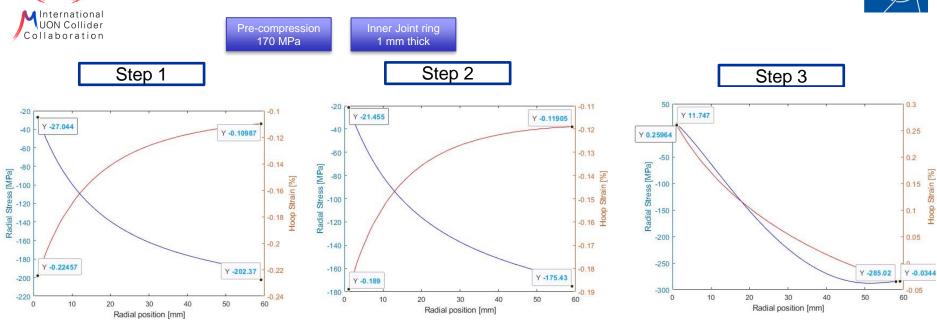
- Review of the model presented at the IMCC2024
- New model



Stress and Strain in the coil

- Mechanical Simulation of a modular coil: all 750 windings are represented
- The model accounts for: Cu yielding and; the thermal contractions of the different materials
 - $P_M = B_0^2 / 2\mu_0 \sim 600 MPa$

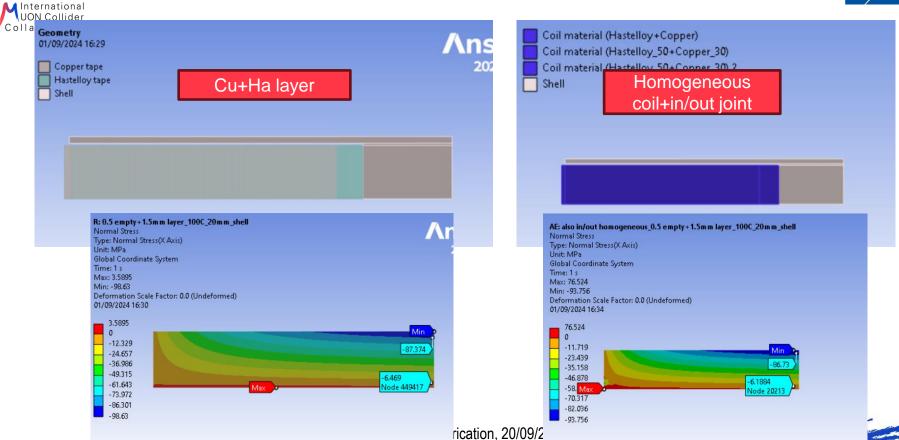
C. Accettura et al., Final Coc


19/20

oid Design a

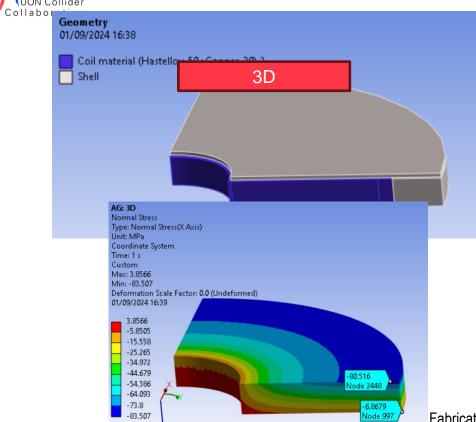
Stress and Strain in the coil

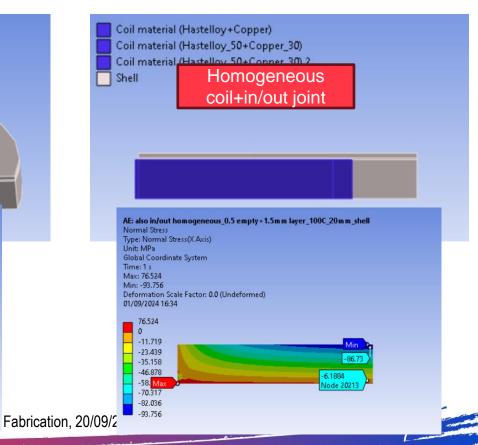
Inner joint optimization



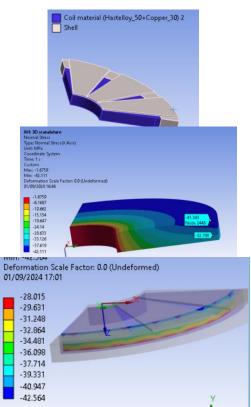
Inner Joint ring thickness [mm]	Pre- compression	Radial stress[MPa]		Hoop Strain [%]			Shear Stress [MPa]			
	at cold [MPa]	Step 1	Step 2	Step 3	Step 1	Step 2	Step 3	1	2	3
0.5	170	-205/-8	-190/-5	-290/10	-0.25 /-0.10	-0.20/ -0.12	-0.04/ 0.28	6	4.5	4
0.5	250	-318/-12	-258/-8	-367/7	-0.39 /-0.17	-0.31/-0.16	-0.09/ 0.18	10	6	5
1	170	-205/-14	-190/-10	-288/19	-0.25 /-0.10	-0.2/-0.12	-0.05/ 0.29	6	4	5
	250	-320/-21	-259/-15	-366/13	-0.39 /-0.17	-0.3/-0.16	-0.09/ 0.18	10	6	5

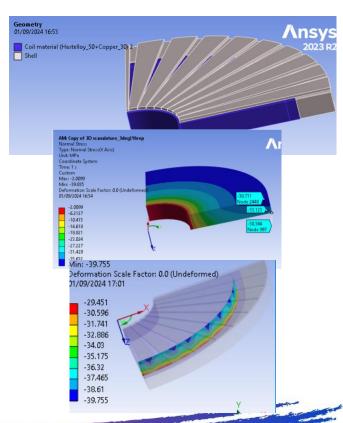
2D layered vs homogeneous



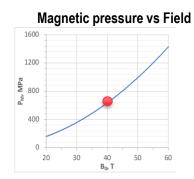


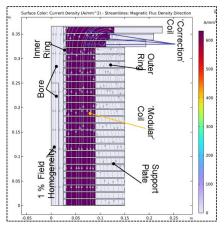
3D vs 2D





Groves optimization


C. Accettura et al., Final Cooling Solenoid Design and Fabrication, 20/09/2024

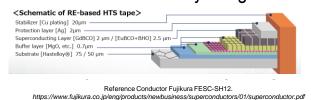


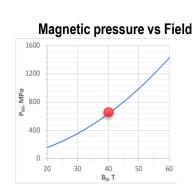
Introduction and Motivations

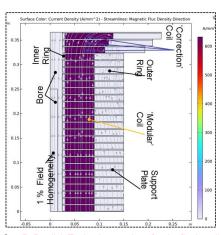
- Design proposed for the Final Cooling solenoid based on single and compact coil → critical stress management:
 - $P_M = B_0^2 / 2\mu_0 \sim 600 MPa$
 - Hoop stress~ 1.4-2.2P_M (compact coil)

See B. Bordini, Technology options for the final coolin solenoids, IMCC Annual Meeting 2023, Orsay

Introduction and Motivations

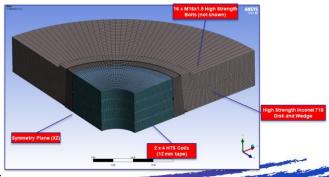



- Design proposed for the Final Cooling solenoid based on single and compact coil → critical stress management:
 - $P_M = B_0^2 / 2\mu_0 \sim 600 MPa$
 - Hoop stress~ 1.4-2.2P_M (compact coil)
- Non- homogeneous and anisotropic material:


Maximum allowable stress very weak in certain direction


Reduced safety margin

See B. Bordini, Technology options for the final cooling solenoids, IMCC Annual Meeting 2023, Orsay



Pre-compression

- How to obtain the pre-compression?
- Mechanical concept is based on encapsulating HTS pancake coils in an external structure, generating high radial compressive stresses. Three concepts analysed:
 - 1. Thermally-induced shrink fitting
 - 2. Adjustable shrink-discs with conical surfaces
 - 3. Hybrid solution (1+2)

Shrink Fitting

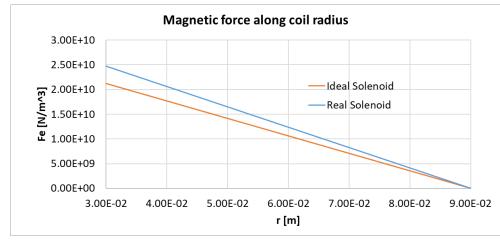
abraticoil surrounded by a cylindrical shell with rin shell < rext coil

- Shell is pre-heated → fitting of the coil inside → cool-down of the shell and thermal contraction
- Simple analytical evaluation: σ_{hoop}=-500MPa→200MPa→interference gap ~220μm→ Tshell~170°C

$$\sigma_{\theta} = -\frac{\rho^2 + \beta^2}{\rho^2} \frac{1}{1 - \beta^2} p_e$$

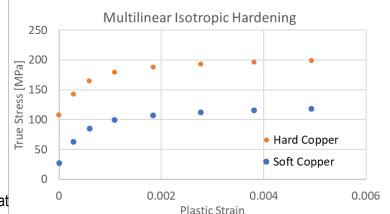
$$\delta = \delta_{i2} - \delta_{e1} = \left[\frac{1}{E_2} \left(\frac{1 + \beta_2^2}{1 - \beta_2^2} + \nu_2 \right) + \frac{1}{E_1} \left(\frac{1 + \beta_1^2}{1 - \beta_1^2} - \nu_1 \right) \right] r_{e1} p_f$$

- Some practical aspects must be considered:
 - Differential contraction during cooldown
 - Strength of the cylinder
 - Impact of the joints
 - Plasticity
 - Mechanical tolerances: 1MPa/µm lost
 - Buckling
 C. Accettura et al., Final Cooling Solenoid Design and Fabrication, 20/09/2024


FEA simulations at different levels of complexity

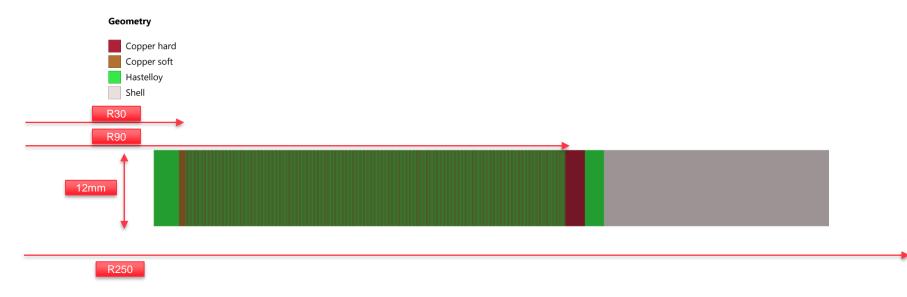
Assumptions

- 2D axisymmetric
- Electromagnetic Forces
 - Ideal Solenoid ($J_{ideal} = \frac{B_{MAX}}{\mu_0(r_{co} r_{ci})} = 531 \text{ A/mm2}$)
 - Real Solenoid ($J_{real} = J_{ideal} = \frac{t_{coil} + t_{supportplate}}{t_{coil}} = 620 \text{ A/mm2}$)


Reference model

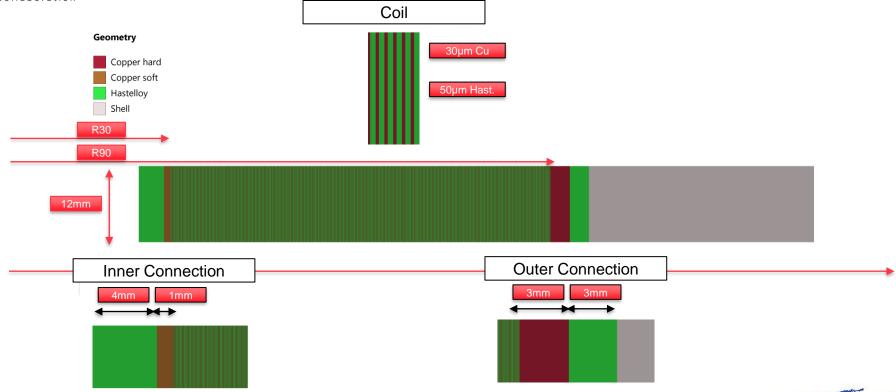
Needed to keep the pre-compression. Soft copper was resulting in a lower pre-compression

Ha to avoid radial tensile and shear stress after cooldown

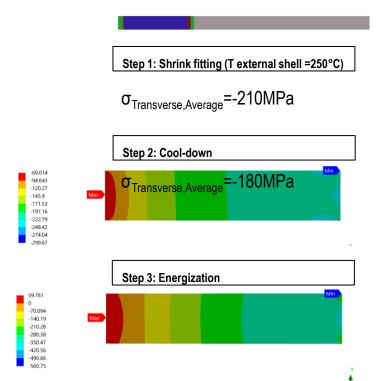


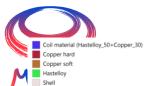
C. Accettura et al., Final Cooling Solenoid Design and Fabricat

Layered model

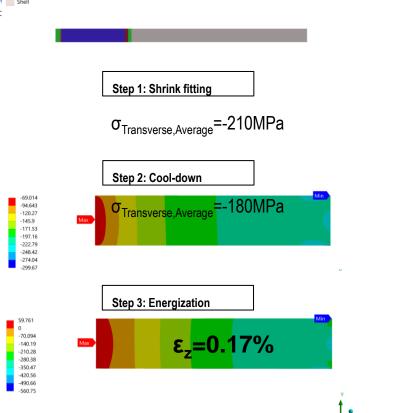


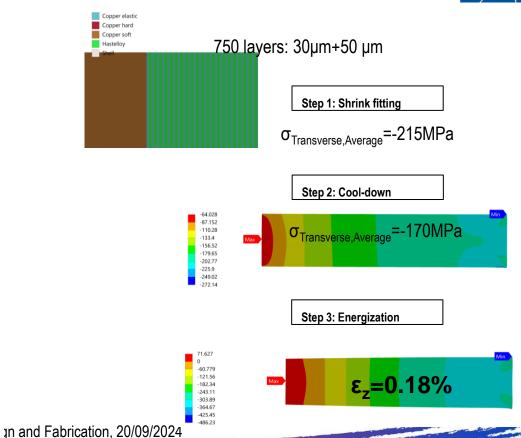
Geometry and Materials



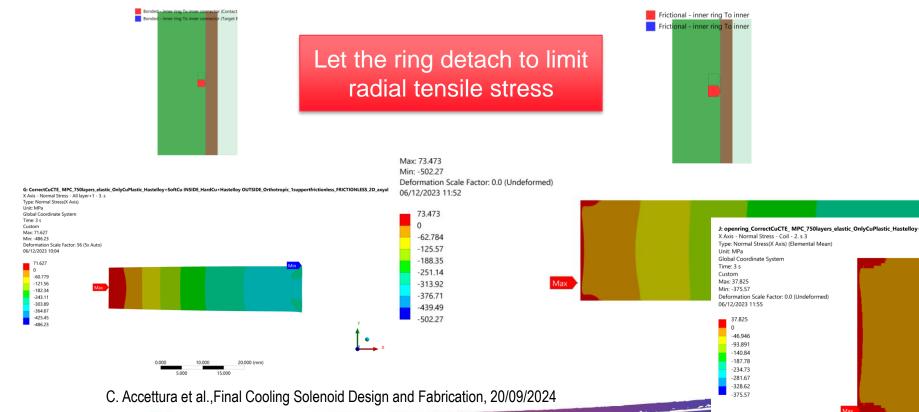

C. Accettura et al., Final Cooling Solenoid Design and Fabrication, 20/09/2024

Validity of homogeneous model



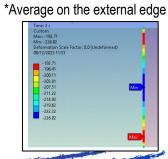


Validity of homogeneous model



Effect of the inner joint properties

Effect of the tape plasticity



		σ_x -radial[MPa]]	ε _z -hoop
step	min	max	ave	max
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%
1	-308	-54	-214	
2	-272	-63	-171 (210*)	
3	-502	73	-224	0.22%

Plastic

Elastic

*Avarage on the systemal ada

L: openingring_CorrectCuCTE_MPC_750layers_plastic_OnlyCuPlastic_Hastelloy+SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1supportfrictionless_FRICTIONLESS_2D_asyalsym_1coil_cot X Axis - Normal Stress - All layer 1 - 3, 5

Type: Normal Stress (X Axis) Unit: MPa Global Coordinate System

Global Coordinate Syster Time: 3 s Custom Obsolete Max: 77.203

Min: -415.95 Deformation Scale Factor: 56 (5x Auto)

Effect of the tape properties

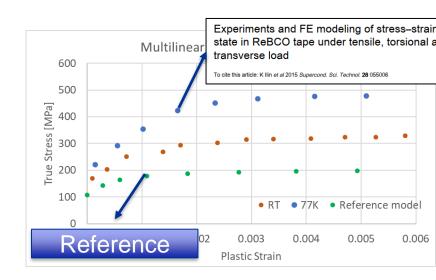
	σ _x -radial[MPa]			ε _z -hoop
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171 (215*)	
3	-484	75	-218	0.24%
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%

^{*}Average on the external edge

Experiments and FE modeling of stress–strain state in ReBCO tape under tensile, torsional and transverse load

To cite this article: K Ilin et al 2015 Supercond. Sci. Technol. 28 055006

Reference



Effect of the tape properties

	σ_{x} -radial[MPa]			ε _z -hoop
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171(215*)	
3	-484	75	-218	0.24%
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%

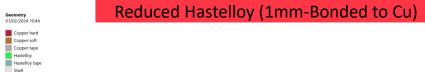
^{*}Average on the external edge

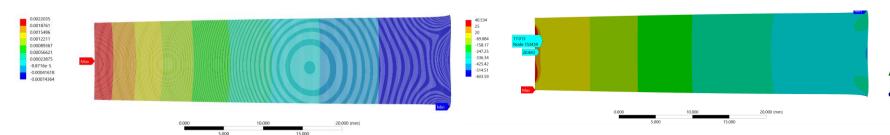
Effect of the tape properties

	σ _x -radial[MPa]			ε _z -hoop
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171(215)	
3	-484	75*	-218	0.24%

*Localized effect

 ε_z =0.24% $\overline{\checkmark}$

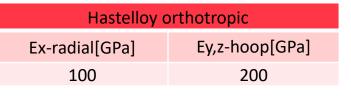




Alternative Inner Joint-1

0.0017623

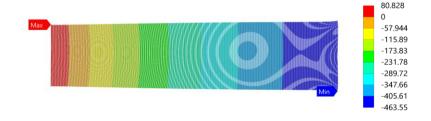
0.0014966 0.001231

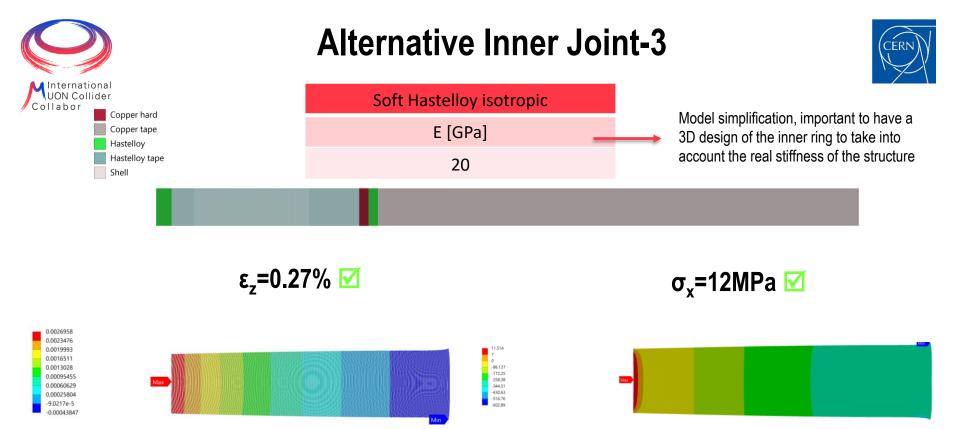

0.00096528

0.00043394

0.00016827

Alternative Inner Joint-2





Type: Normal Elastic Strain(Y Axis)

Deformation Scale Factor: 0.0 (Undeformed)

Unit: mm/mm

Max: 0.0018075

Min: -0.00038037

01/02/2024 10:00

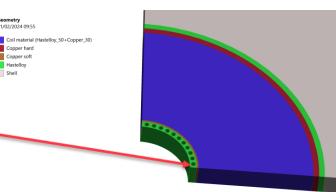
0.0015644 0.0013213 0.0010782 0.00083513

0.00059203

0.00034893

0.00010583

0.00013727


Time: 2 s

Coordinate System 3

Alternative Inner Joint-4

X Axis - Normal Stress - Coil - 3. s

Deformation Scale Factor: 0.0 (Undeformed)

Type: Normal Stress(X Axis)

Coordinate System 3

Unit: MPa

Time: 2 s

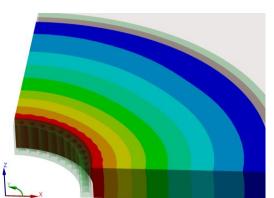
Custom Max: 38.188

Min: -401.82

01/02/2024 09:56

-114.81

-172.21


-229.61

-287.02

344.42


3D model more time-consuming, homogeneous material and mesh to be refined → INCREASE OF at least~50% **expected**

01/02/2024 09:55

σ_x <20MPa

Shrink Fitting

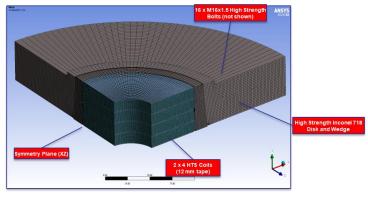
* PratiCoil surrounded by a cylindrical shell with rin<rext_coil

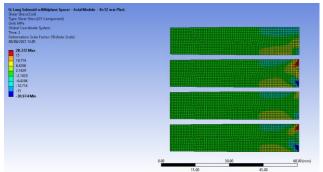
- Shell is pre-heated → fitting of the coil inside → cool-down of the shell and thermal contraction
- Simple analytical evaluation: 600MPa→200MPa→interference gap ~300µm→ ~250°C

$$\sigma_{\theta} = -\frac{\rho^2 + \beta^2}{\rho^2} \frac{1}{1 - \beta^2} p_e$$

$$\delta = \delta_{i2} - \delta_{e1} = \left[\frac{1}{E_2} \left(\frac{1 + \beta_2^2}{1 - \beta_2^2} + \nu_2 \right) + \frac{1}{E_1} \left(\frac{1 + \beta_1^2}{1 - \beta_1^2} - \nu_1 \right) \right] r_{e1} p_f$$

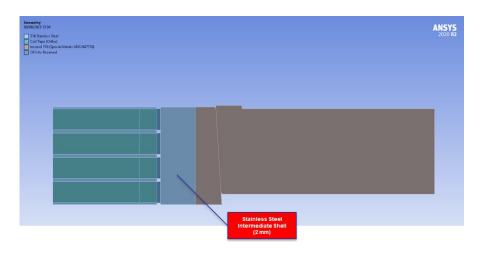
- Some practical aspects must be considered:
 - Differential contraction during cooldown
 - Strength of the cylinder
 - Impact of the joints
 - Plasticity
 - Mechanical tolerances: 2MPa/µm lost
 - Buckling
 - C. Accettura et al., Final Cooling Solenoid Design and Fabrication, 20/09/2024


FEM simulations at different levels of complexity



Mechanical considerations - Second concept

- 2 Load Steps:
 - Shrink Disk displacement (5 mm)
 - Energization
- Max. Hoop Stress (after energization):
 620.4 MPa
- Max. Hoop Strain (after energization): 0.344 %
- Shear Stresses globally lower than 15 MPa
- However, locally they can reach after energization ~ |30| MPa

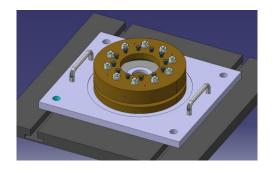


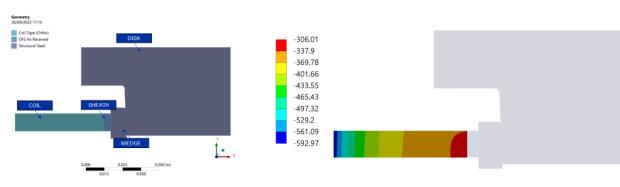
Mechanical considerations - Third concept

- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2. Shrink Disk Displacement (2.2 mm); 3. Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598
 MPa
- Max. Hoop Strain after energization: 0.332
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa

Mechanical considerations - Third concept

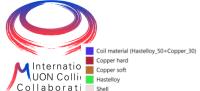
- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2.
 Shrink Disk Displacement (2.2 mm); 3.
 Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598
 MPa
- Max. Hoop Strain after energization: 0.332
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa


JAS NOTTIG		ANS 202
DED CO.		1
REBCO conductor		
Axial tensile stress	700MPa	
Axial tensile strain	0.4%	П
Transverse compressive stress	>100MPa	
Transverse tensile stress	10-100MPa	
Max shear stress	>19MPa	
	Axial tensile strain Transverse compressive stress Transverse tensile stress	REBCO conductor Axial tensile stress 700MPa Axial tensile strain 0.4% Transverse compressive stress >100MPa Transverse tensile stress 10-100MPa


Preliminary is ok, but limited safety margins >
 Fundamental to have a good understanding of the material limits and failure mode

Testing

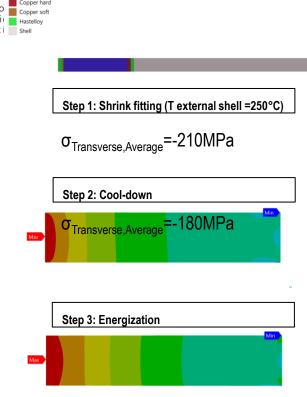
- σ_{hoop} ~-600MPa reached on the inner radius of the coil
- The required compression is achieved with 10 M16 bolts
- System equipped with strain gauges and digital image correlation to characterize the coil

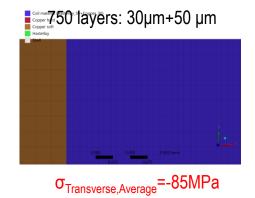


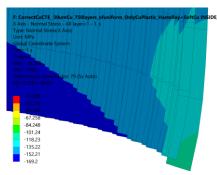
Conclusion and next step

- The final cooling solenoid requires a pre-compression to operate at 40T:
 - Shrink fitting, mechanical jigs or a combined solution can provide the required pre-compressions
 - Tape properties impacting the results → important to benchmark them with experimental tests
 - The design of the inner and outer rings is critical: some possible solutions identified, more modelling work is needed to finalize the design
 - Different FEM models ready to investigate more options
 - Extensive work of design of the tooling for the experimental characterization of the tape

C. Accettura et al., Final Cooling Solenoid Design and Fabrication, 20/09/2024



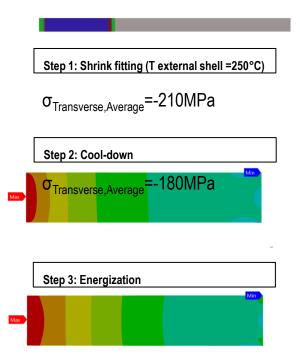

-94.643 -120.27 -145.9 -171.53 -197.16 -222.79 -248.42 -274.04

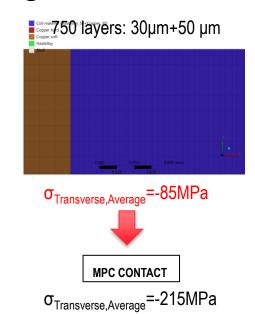

-70.094 -140.19 -210.28 -280.38 -350.47 -420.56 -490.66

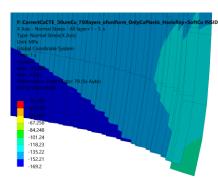
Validity of homogeneous model

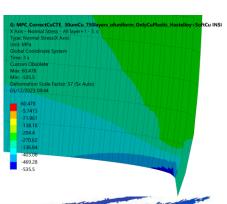
-94.643 -120.27 -145.9 -171.53 -197.16

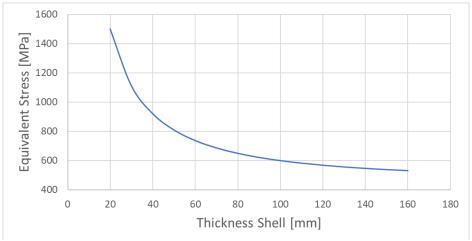
-222.79 -248.42 -274.04

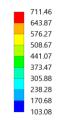

-70.094 -140.19 -210.28


-280.38 -350.47


-420.56 -490.66


Validity of homogeneous model

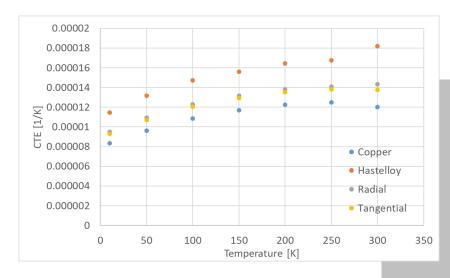


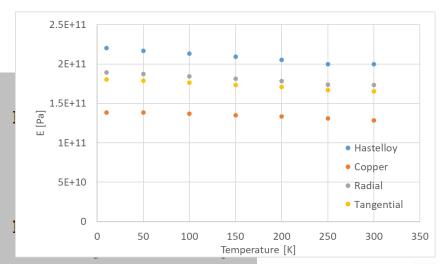


Why thick shell?

Before energization

0.00 25.00 50.00 (mm)


Homogeneization



- Radial direction → springs in series
- Tangential direction → springs in parallel

$$E_{radial} = \frac{E_{Cu} \cdot t_{Cu} + E_{Ha} \cdot t_{Ha}}{t_{tot}}$$

$$E_{tangential} = t_{tot} \cdot \left(\frac{t_{Cu}}{E_{Cu}} + \frac{t_{Ha}}{E_{Ha}}\right)^{-1}$$

