Designing a Time Projection Chamber for Schools

CLassroom Experiment On PArticle TRAcking

CLEOPATRA

DPG Spring Meeting Karlsruhe 08.03.2024 Annika Hoverath

CLEOPATRA - Goals

CLassroom Experiment On PArticle TRAcking

CLEOPATRA - Goals

CLassroom Experiment On PArticle TRAcking

CLEOPATRA - Goals

CLassroom Experiment On PArticle TRAcking

CLEOPATRA - Setup

Current Developments

• Magnetic field

Current Developments

• Magnetic field

• Scintillator

- Sagitta method
- \overline{AB} : bent particle track

- Sagitta method
- \overline{AB} : bent particle track
- d: distance between A & B

- Sagitta method
- *AB*: bent particle track
- d: distance between A & B
- Goal: distinguish lines
- s: minimal resolvable distance

- Bent particles: ⁹⁰Sr
- Lorentz force
- + Pythagoras
 - $\rightarrow B_{min} \approx 50 \ mT$

Magnetic Field - Realization

Magnetic Field – Coil Length

Scintillators – Setup Ideas

Further Improvements

- Particles can't get through magnetic field AND scintillators
 - \rightarrow separate setups

Current Developments

- Magnetic field
 - Particle identification

- Scintillator
 - Angle distribution

5

Further Improvements

- Particles can't get through magnetic field AND scintillators
 - \rightarrow separate setups

Backup

Particle Tracks Courant state of sowtware

- Bent particles: ⁹⁰Sr
- $R(p) = \frac{p}{eB}$

•
$$R^2 = \frac{l^2}{2} + (R - s)^2$$

with p_{max} of e^- of ${}^{90}Sr$

$$\rightarrow B_{min} = 50 \ mT$$

Magnetic Field – realization

Coil properties	Necessary values
Length	20 cm
Current	6.5 <i>A</i>
Windings	~ 1600
Wire diameter	1.5 mm
Resistance	$\sim 7 \ \Omega$
Voltage	45 V
Power	~ 300 W

\rightarrow upper limit of possible realization