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Characterization of the 
Hamamatsu R12699-406-M4 
2-inch Photomultipliers
in MarmotX and XAMS



Rare event searches
Xenon time projection chambers
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Low energy  few keV to 
tens of MeV

→

XENON10 XENON100 XENON1T XENONnT 
(present)

DARWIN/
XLZD 

(future)

14kg 62kg ~2 t ~6 t ~37 t
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Working principle
‣ Readout of both scintillation and ionization 

signals


‣ Prompt scintillation light: S1


‣ Secondary (proportional) scintillation light: S2


‣ Reconstruction of 


‣ 3D position (x, y, z) 

‣ Energy


‣ Interaction type (ER/NR) through S1/S2 ratio


‣ Self-shielding  fiducial volume  →

Dual-phase xenon TPC
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What makes this model interesting?

‣ Low profile


‣ Low buoyancy


‣ Sub-ns rise-time and transit-time spread 
(TTS) (i.e. very fast)


‣ Multi-anode readout 


‣ Less HV cables per channel


‣ Variable granularity


‣ 75% photocathode coverage


‣ QE of 33% (similar to 32.5% of R11410-21 
XENONnT PMTs)


‣ Improved radioactivity  *
Low profile PMT

Multianode metal channel dynode principle
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 See XeSAT2024 presentation by Y. Meng (PandaX)*

https://indico-tdli.sjtu.edu.cn/event/1861/contributions/11609/attachments/4517/7175/XeSAT2024_PMT12699.pdf


What makes this model interesting?

R12699-406-M4 2-inch PMT

Hamamatsu R12699 M4 2-inch PMT 52 x 52 x 
15 mm

Low profile PMT

Multianode metal channel dynode principle

From now on “2-inch PMTs”
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‣ Low profile


‣ Low buoyancy


‣ Sub-ns rise-time and transit-time spread 
(TTS) (i.e. very fast)


‣ Multi-anode readout 
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Full MarmotX setup

Photosensor R&D
MarmotX

MarmotX cryostat with two pairs of face-to-face 2-inch 
PMTs

10 Maricke Flierman | 27-08-2024 | LIDINE 2024



Dual-phase xenon TPC
XAMS

XAMS dual-phase xenon TPC 
with two 2-inch PMTs installed

Full XAMS setup
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Results
SPE response | Dark counts | Afterpulsing | Position reconstruction



Single photoelectron response

‣ Model independent approach as 
proposed by Saldanha et al. (2016) 


‣ SPE resolution  factor 
1.23±0.14 higher than R11410-21 
PMTs


‣ Typical gain of  exceeded for 
each PMT at nominal voltage 
(~1000V)


‣ Long term gain stability tests 
ongoing

1

σ1PE /μ1PE

2 ⋅ 106

Characterization results
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Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron 
calibration of photomultiplier tubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 
Spectrometers, Detectors and Associated Equipment, 863, 35-46.

1
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Dark counts
‣ Dark counts (DC) dangerous for 

accidental coincidences (ACs)


‣ Important background for WIMP and 
LowER searches in DARWIN

Characterization results
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Thermionic emission 
: 97% of total DCR 

: 70% of total DCR
Troom

T = − 100∘C

Xenon scintillation light
GXe LXe

Two facing 2-inch PMTs in MarmotX

DC rate at LXe 
temperature 

[Hz/cm2]

AC rate estimation 
for DARWIN in WIMP 

ROI* 
[events/year]

R12699-406-M4 0.4 ± 0.2 4 . 104

R11410-21 1.4 ± 0.7 3 . 105
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Thermionic emission 
: 97% of total DCR 

: 70% of total DCR
Troom

T = − 100∘C

Xenon scintillation light
GXe LXe

4-fold coincidence, S1 ROI (4,20) PE and S2 ROI (100,1000) PE

AC rate same order of magnitude for XENONnT sized detector

* Two facing 2-inch PMTs in MarmotX
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Very preliminary!

‣ Dark counts (DC) dangerous for 
accidental coincidences (ACs)


‣ Important background for WIMP and 
LowER searches in DARWIN



Afterpulsing

‣ Timing: ion drift path and mass-
to-charge ratio


‣ Expected timing order of 
magnitude faster than 
R11410-21 PMTs


‣ Different AP treatment needed


‣ For 8PE/trigger occupancy, 
separable AP rate: (0.90±0.2)%/
PE  hard to compare→

Characterization results
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Inseparable

Dark counts

Heavy ions?
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https://github.com/Physik-Institut-UZH/PMT_Analysis/blob/main/pmt_analysis/processing/afterpulses.py


Position reconstruction
Characterization results
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XAMS Top PMT holder including anode and 
top screening meshes
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Position reconstruction
Characterization results
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XAMS Top PMT holder including anode and 
top screening meshes
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Position reconstruction
Characterization results
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Position reconstruction
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Position reconstruction
Characterization results
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PMT photocathodeMesh 



Position reconstruction
Characterization results
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XAMS Top PMT holder including anode and 
top screening meshes

I II

III IV

PMT photocathodeMesh 



R12699 & R11410-21
Summary and comparison

23
See https://agenda.ciemat.es/event/4282/contributions/5135/attachments/3439/5445/Lidine_Bismark_2023.pdf

+ position reconstruction!



Ongoing studies

‣ Long term stability tests


‣ Gain/SPE response


‣ Afterpulse rate


‣ Extend characterization to more 
PMTs


‣ Assembly of 2x4 TPC setup at UZH


‣ Improving position reconstruction 
resolution by building simulation of 
XAMS

Outlook
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Design of 2x4 setup at UZH
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Design of 2x4 setup at UZH

Thank you!



Backup slides



SiPMs
Pros and cons
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‣ Pros:


‣ No high voltage needed


‣ Cheap


‣ Low radioactivity


‣ Cons:


‣ We need a large photosensitive surface 
 high channel count (high DCR, lots of 

cables, high data stream, etc) 


‣ Lower QE ~20% for UV sensitive SiPMs

→

From Hamamatsu datasheet



DCR to AC estimation
Very preliminary
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‣ Semi-analytical (partially simulation, partially theory) model to predict AC rate 
as a function of:


‣ Dark Count Rate


‣ Detector parameters (g1, g2, SEG, electric fields, etc)


‣ Detector geometry (size, number of PMTs, etc)


‣ Matched to XENON1T data


‣ Extrapolated to DARWIN-sized detector
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DCR and LE

1/4 PE threshold

Muons 
: 0.2% of total DCR 

: 7.4% of total DCR
Troom

T = − 100∘C

Thermionic emission 
: 97% of total DCR 

: 70% of total DCR
Troom

T = − 100∘C

Radioactivity from  source60C (Liquid) Xenon scintillation light

GXe

GXe

GXe

LXe



Model independent approach1
Determination of the SPE response
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‣ Fitting


‣ Shape of PMT charge spectrum of fully amplified PE not known


‣ SPE response under amplified due to sub-optimal trajectories through the 
dynode chain


‣ Noise spectrum not known a priori


‣ Model independent approach


‣ Full spectral shape of SPE response not needed


‣ Only mean and variance of the SPE distribution + occupancy
Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron calibration of photomultiplier tubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 863, 35-46.1
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SPE fitting
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Number of 2-inch PMTs in DARWIN

RTPC = 1300 mm
Ainside = π ⋅ R2

TPC = 5.31 ⋅ 106 mm2

Aoutside = (2 ⋅ RTPC)2 − Ainside = 1.45 ⋅ 106 mm2

Aoutside
Ainside

APMT = (56 + 10)2 mm2

NPMT =
Ainside + ⌊ Aoutside − Ainside

APMT
⌋

APMT
⋅ 2 ≈ 2440

Margin



Dual-phase xenon TPC working principle
Direct detection

1. Particle interacts with the xenon atom, 
which ionizes and excites the xenon


2. Excited and ionized xenon forms dimer 
states and de-excite: S1 (mostly bottom 
PMT array)


3. Freed electrons drift up due to electric field


4. Between the gate and the anode, extraction 
field causes proportional scintillation of the 
xenon: S2 (mostly top PMT array). 
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