Characterization of the Hamamatsu R12699-406-M4 **2-inch Photomultipliers** in MarmotX and XAMS

Maricke Flierman | 27-08-2024 | LIDINE 2024

UNIVERSITY OF AMSTERDAM

Rare event searches Xenon time projection chambers

WIMP DM Spin-dependent Spin-independent Light WIMPs and more

Other DM candidates

Dark photons Axion-like particles and more

XENON10	XENON100	XENON1T	XENONnT (present)	DARWIN/ XLZD (future)
14kg	62kg	~2 t	~6 t	~37 t

Neutrinos

Atmospheric & solar neutrinos Neutrino Magnetic Moment Super Nova (Early Warning System) B8 CE ν NS

> Weak decays Double Electron Capture Spectral shape measurements $0\nu\beta\beta \& 2\nu\beta\beta$

Rare event searches Xenon time projection chambers

XENON10	XENON100	XENON1T	XENONnT (present)	DARWIN/ XLZD (future)
14kg	62kg	~2 t	~6 t	~37 t

Neutrinos

Atmospheric & solar neutrinos Neutrino Magnetic Moment Super Nova (Early Warning System) B8 CE ν NS

Weak decays Double Electron Capture Spectral shape measurements $0\nu\beta\beta \& 2\nu\beta\beta$

Dual-phase xenon TPC Working principle

- Readout of both scintillation and ionization signals
- Prompt scintillation light: S1
- Secondary (proportional) scintillation light: S2
- **Reconstruction of**
 - ► 3D position (**x**, **y**, **z**)
 - Energy
 - Interaction type (ER/NR) through S1/S2 ratio
- Self-shielding \rightarrow fiducial volume

What makes this model interesting?

Low profile PMT

What makes this model interesting?

- Low profile
 - Low buoyancy
 - Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)

Multianode metal channel dynode principle

Low profile PMT

What makes this model interesting?

- Low profile
 - Low buoyancy
 - Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)
- Multi-anode readout
 - Less HV cables per channel
 - Variable granularity

Multianode metal channel dynode principle

Low profile PMT

What makes this model interesting?

- Low profile
 - Low buoyancy
 - Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)
- Multi-anode readout
 - Less HV cables per channel
 - Variable granularity
- 75% photocathode coverage
- QE of 33% (similar to 32.5% of R11410-21) XENONnT PMTs)
- Improved radioactivity*

Multianode metal channel dynode principle

Low profile PMT

What makes this model interesting?

- Low profile
 - Low buoyancy

From now on "2-inch PMTs"

- Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)
- Multi-anode readout
 - Less HV cables per channel
 - Variable granularity
- 75% photocathode coverage
- QE of 33% (similar to 32.5% of R11410-21) XENONnT PMTs)
- Improved radioactivity*

MULTIANODE

Multianode metal channel dynode principle

Low profile PMT

Varmotx Universität Zürich^{uz} **Photosensor R&D**

Full MarmotX setup

MarmotX cryostat with two pairs of face-to-face 2-inch PMTs

XANS Nikhef **Dual-phase xenon TPC**

Full XAMS setup

XAMS dual-phase xenon TPC with two 2-inch PMTs installed

Results

SPE response | Dark counts | Afterpulsing | Position reconstruction

Characterization results Single photoelectron response

- Model independent approach as proposed by Saldanha et al. (2016)¹
- SPE resolution σ_{1PE}/μ_{1PE} factor 1.23±0.14 higher than R11410-21 **PMTs**
- Typical gain of $2 \cdot 10^6$ exceeded for each PMT at nominal voltage (~1000V)
- Long term gain stability tests ongoing

¹Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron calibration of photomultiplier tubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 863, 35-46.

Characterization results Dark counts

- Dark counts (DC) dangerous for accidental coincidences (ACs)
- Important background for WIMP and LowER searches in DARWIN

	DC rate at LXe temperature [Hz/cm ²]
R12699-406-M4	0.4 ± 0.2
R11410-21	1.4 ± 0.7

Zürich uzu tät

Two facing 2-inch PMTs in MarmotX

Characterization results Dark counts

- Dark counts (DC) dangerous for accidental coincidences (ACs)
- Important background for WIMP and LowER searches in DARWIN

	DC rate at LXe temperature [Hz/cm ²]	AC rate estimation for DARWIN in WIMP ROI* [events/year]
R12699-406-M4	0.4 ± 0.2	4 · 104
R11410-21	1.4 ± 0.7	3 · 10 ⁵

*4-fold coincidence, S1 ROI (4,20) PE and S2 ROI (100,1000) PE AC rate same order of magnitude for XENONnT sized detector

Zürich uzu tät

Two facing 2-inch PMTs in MarmotX

Characterization results Afterpulsing

- Timing: ion drift path and massto-charge ratio
- Expected timing order of magnitude faster than R11410-21 PMTs
- Different <u>AP treatment</u> needed
- For 8PE/trigger occupancy, separable AP rate: (0.90±0.2)%/
 PE → hard to compare

XAMS Top PMT holder including anode and top screening meshes

XAMS Top PMT holder including anode and top screening meshes

Distribution of events for X and Y Y [mm] -30 -2020 30. . . 10 -100 X [mm] PMT photocathode Mesh

XAMS Top PMT holder including anode and top screening meshes

Distribution of events for X and Y Y [mm] -30 -20 -2The state of the second state of the , 30 10 20 -100 X [mm] PMT photocathode Mesh

Summary and comparison R12699 & R11410-21

See https://agenda.ciemat.es/event/4282/contributions/5135/attachments/3439/5445/Lidine_Bismark_2023.pdf 23

+ position reconstruction!

Dimensions

- Dynodes (structure /
- number of stages)

Operation voltage (nominal / maximum)

- Quantum efficiency at 175 nm (data sheet / effective)

Gain (data sheet / effective)

- - Time response (Rise time / Transit time / Transit time spread)
 - Transit time spread)
- Expected He⁺
 afterpulse delay

Dark count rate (-100°C, >1/4 PE)

Outlook **Ongoing studies**

- Long term stability tests
 - Gain/SPE response
 - Afterpulse rate
- Extend characterization to more **PMTs**
- Assembly of 2x4 TPC setup at UZH
- Improving position reconstruction resolution by building simulation of **XAMS**

Design of 2x4 setup at UZH

Outlook **Ongoing studies**

- Long term stability tests
 - Gain/SPE response
 - Afterpulse rate

- Extend characterization to more **PMTs**
- Assembly of 2x4 TPC setup at UZH
- Improving position reconstruction resolution by building simulation of **XAMS**

Design of 2x4 setup at UZH

Backup slides

SiPMsPros and cons

- Pros:
 - No high voltage needed
 - Cheap
 - Low radioactivity
- Cons:
 - We need a large photosensitive surface
 → high channel count (high DCR, lots of cables, high data stream, etc)
 - Lower QE ~20% for UV sensitive SiPMs

From Hamamatsu datasheet

DCR to AC estimation Very preliminary

- as a function of:
 - Dark Count Rate
 - Detector parameters (g1, g2, SEG, electric fields, etc)
 - Detector geometry (size, number of PMTs, etc)
- Matched to XENON1T data
- Extrapolated to DARWIN-sized detector

Semi-analytical (partially simulation, partially theory) model to predict AC rate

E

Area MA0055

[PE]

MA0055

DCR and LE

Model independent approach¹ **Determination of the SPE response**

- Fitting
 - Shape of PMT charge spectrum of fully amplified PE not known
 - dynode chain
 - Noise spectrum not known a priori
- Model independent approach
 - Full spectral shape of SPE response not needed
 - Only mean and variance of the SPE distribution + occupancy

SPE response under amplified due to sub-optimal trajectories through the

¹Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron calibration of photomultiplier tubes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 863, 35-46.

SPE fitting

Number of 2-inch PMTs in DARWIN

$$A_{outside} = (2 \cdot R_{TPC})^2 - A_{inside} = 1.45 \cdot 10^6 \text{ mm}$$
$$A_{inside} = \pi \cdot R_{TPC}^2 = 5.31 \cdot 10^6 \text{ mm}^2$$
$$A_{PMT} = (56 + 10)^2 \text{ mm}^2$$
$$Margin$$

$$N_{PMT} = \frac{A_{inside} + \left[\frac{A_{outside} - A_{inside}}{A_{PMT}}\right]}{A_{PMT}} \cdot 2 \approx 24$$

Dual-phase xenon TPC working principle

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

Dual-phase xenon TPC working principle

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

Dual-phase xenon TPC working principle

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)

3. Freed electrons drift up due to electric field

4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

Dual-phase xenon TPC working principle

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

Dual-phase xenon TPC working principle

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

