Maricke Flierman | 27-08-2024 | LIDINE 2024

Characterization of the Hamamatsu R12699-406-M4 2-inch Photomultipliers in MarmotX and XAMS

Rare event searches Xenon time projection chambers

WIMP DM Spin-dependent Spin-independent Light WIMPs *and more*

Dark photons Axion-like particles *and more*

Other DM candidates

Weak decays Double Electron Capture Spectral shape measurements 0*νββ* & 2*νββ*

Neutrinos

Atmospheric & solar neutrinos Neutrino Magnetic Moment Super Nova (Early Warning System) B8 CE*ν*NS

Rare event searches Xenon time projection chambers

Weak decays Double Electron Capture Spectral shape measurements 0*νββ* & 2*νββ*

Neutrinos

Atmospheric & solar neutrinos Neutrino Magnetic Moment Super Nova (Early Warning System) B8 CE*ν*NS

- ‣ Readout of both scintillation and ionization signals
- Prompt scintillation light: S1
- ‣ Secondary (proportional) scintillation light: S2
- ‣ Reconstruction of
	- ‣ 3D position (**x, y, z**)
	- ‣ Energy
	- Interaction type (ER/NR) through S1/S2 ratio
- \rightarrow Self-shielding \rightarrow fiducial volume

Working principle Dual-phase xenon TPC

Low profile PMT

Multianode metal channel dynode principle

Hamamatsu R12699 M4 2-inch PMT 52 x 52 x 15 mm

- ‣ Low profile
	- ‣ Low buoyancy
	- ‣ Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)

Low profile PMT

Multianode metal channel dynode principle

Hamamatsu R12699 M4 2-inch PMT 52 x 52 x 15 mm

- ‣ Low profile
	- ‣ Low buoyancy
	- ‣ Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)
- ‣ Multi-anode readout
	- ‣ Less HV cables per channel
	- ‣ Variable granularity

Low profile PMT

Multianode metal channel dynode principle

Hamamatsu R12699 M4 2-inch PMT 52 x 52 x 15 mm

- ‣ Low profile
	- **Eow buoyancy**
	- ‣ Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)
- ‣ Multi-anode readout
	- ‣ Less HV cables per channel
	- ‣ Variable granularity
- ‣ 75% photocathode coverage
- ‣ QE of 33% (similar to 32.5% of R11410-21 XENONnT PMTs)
- Improved radioactivity $*$

Low profile PMT

Hamamatsu R12699 M4 2-inch PMT 52 x 52 x 15 mm

R12699-406-M4 2-inch PMT

Hamamatsu R12699 M4 2-inch PMT 52 x 52 x 15 mm

- ‣ Low profile
	- **EDW buoyancy**

- ‣ Sub-ns rise-time and transit-time spread (TTS) (i.e. very fast)
- ‣ Multi-anode readout
	- ‣ Less HV cables per channel
	- ‣ Variable granularity
- ‣ 75% photocathode coverage
- ‣ QE of 33% (similar to 32.5% of R11410-21 XENONnT PMTs)
- Improved radioactivity $*$

Low profile PMT

Multianode metal channel dynode principle

From now on "2-inch PMTs"

9

Full MarmotX setup

Photosensor R&D MarmotX C Duniversität

MarmotX cryostat with two pairs of face-to-face 2-inch PMTs

Dual-phase xenon TPC XAMS

XAMS dual-phase xenon TPC with two 2-inch PMTs installed

Full XAMS setup

Results

SPE response | Dark counts | Afterpulsing | Position reconstruction

- ‣ Model independent approach as proposed by Saldanha et al. (2016) 1
- \sim SPE resolution σ_{1PE}/μ_{1PE} factor 1.23±0.14 higher than R11410-21 PMTs
- \cdot Typical gain of $2 \cdot 10^6$ exceeded for each PMT at nominal voltage (~1000V)
- ‣ Long term gain stability tests ongoing

Single photoelectron response Characterization results

¹Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron calibration of photomultiplier tubes. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, *863*, 35-46.

- Dark counts (DC) dangerous for accidental coincidences (ACs)
- ‣ Important background for WIMP and LowER searches in DARWIN

Dark counts Characterization results

Two facing 2-inch PMTs in MarmotX

Zürich _{uzu}tät

Dark counts Characterization results

4-fold coincidence, S1 ROI (4,20) PE and S2 ROI (100,1000) PE * Two facing 2-inch PMTs in MarmotX AC rate same order of magnitude for XENONnT sized detector

Zürich _{uzu}tät

- Dark counts (DC) dangerous for accidental coincidences (ACs)
- ‣ Important background for WIMP and LowER searches in DARWIN

- ‣ Timing: ion drift path and massto-charge ratio
- ‣ Expected timing order of magnitude faster than R11410-21 PMTs
- ‣ Different [AP treatment](https://github.com/Physik-Institut-UZH/PMT_Analysis/blob/main/pmt_analysis/processing/afterpulses.py) needed
- ‣ For 8PE/trigger occupancy, separable AP rate: (0.90±0.2)%/ $PE \rightarrow$ hard to compare

Afterpulsing Characterization results

XAMS Top PMT holder including anode and top screening meshes

XAMS Top PMT holder including anode and top screening meshes

Distribution of events for X and Y

Distribution of events for X and Y

XAMS Top PMT holder including anode and top screening meshes

R12699 & R11410-21 Summary and comparison

See https://agenda.ciemat.es/event/4282/contributions/5135/attachments/3439/5445/Lidine_Bismark_2023.pdf

+ position reconstruction!

- **Dimensions**
- **Packing density**
-
- Dynodes (structure / number of stages)

繠

Operation voltage (nominal / maximum)

- Quantum efficiency at 175 nm (data sheet / effective)
- $\mathbf{\hat{m}}$
	- Gain (data sheet / effective)
-
- **Time response (Rise)** time / Transit time / Transit time spread)
- **Expected He⁺** $\overset{\circ}{\oplus}$ afterpulse delay

Dark count rate
(-100°C, >1/4 PE)

Ongoing studies Outlook

- ‣ Long term stability tests
	- ‣ Gain/SPE response
	- ‣ Afterpulse rate
- ‣ Extend characterization to more PMTs
- ‣ Assembly of 2x4 TPC setup at UZH
- ‣ Improving position reconstruction resolution by building simulation of XAMS

Design of 2x4 setup at UZH

- ‣ Long term stability tests
	- ‣ Gain/SPE response
	- ‣ Afterpulse rate

Ongoing studies Outlook

- ‣ Extend characterization to more PMTs
- ‣ Assembly of 2x4 TPC setup at UZH
- ‣ Improving position reconstruction resolution by building simulation of XAMS

Design of 2x4 setup at UZH

Backup slides

SiPMs Pros and cons

- ‣ Pros:
	- ‣ No high voltage needed
	- ‣ Cheap
	- ‣ Low radioactivity
- ‣ Cons:
	- ‣ We need a large photosensitive surface \rightarrow high channel count (high DCR, lots of cables, high data stream, etc)
	- ‣ Lower QE ~20% for UV sensitive SiPMs

From Hamamatsu datasheet

DCR to AC estimation Very preliminary

‣ Semi-analytical (partially simulation, partially theory) model to predict AC rate

- as a function of:
	- Dark Count Rate
	- Detector parameters (g1, g2, SEG, electric fields, etc)
	- ‣ Detector geometry (size, number of PMTs, etc)
- ‣ Matched to XENON1T data
- ‣ Extrapolated to DARWIN-sized detector

罔

Area MA0055

冟

MA0055

DCR and LE

Model independent approach¹ **Determination of the SPE response**

- ‣ Fitting
	- ‣ Shape of PMT charge spectrum of **fully amplified** PE not known
	- dynode chain
	- ‣ Noise spectrum not known a priori
- ‣ Model independent approach
	- ‣ Full spectral shape of SPE response not needed
	- Only mean and variance of the SPE distribution + occupancy

‣ SPE response under amplified due to sub-optimal trajectories through the

¹Saldanha, R., Grandi, L., Guardincerri, Y., & Wester, T. (2017). Model independent approach to the single photoelectron calibration of photomultiplier tubes. Nuclear Instruments and Methods in Physics Research Section A

31

SPE fitting

Number of 2-inch PMTs in DARWIN

$$
A_{outside} = (2 \cdot R_{TPC})^2 - A_{inside} = 1.45 \cdot 10^6 \text{ mr}
$$

$$
A_{inside} = \pi \cdot R_{TPC}^2 = 5.31 \cdot 10^6 \text{ mm}^2
$$

$$
A_{PMT} = (56 + 10)^2 \text{ mm}^2
$$

$$
M_{\text{margin}}
$$

$$
N_{PMT} = \frac{A_{inside} + \left[\frac{A_{outside} - A_{inside}}{A_{PMT}}\right]}{A_{PMT}} \cdot 2 \approx 24
$$

Dual-phase xenon TPC working principle

Direct detection

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)

3. Freed electrons drift up due to electric field

4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

- 1. Particle interacts with the xenon atom, which ionizes and excites the xenon
- 2. Excited and ionized xenon forms dimer states and de-excite: S1 (mostly bottom PMT array)
- 3. Freed electrons drift up due to electric field
- 4. Between the gate and the anode, extraction field causes proportional scintillation of the xenon: S2 (mostly top PMT array).

