## **APEX: Optimized vertical drift PDS for DUNE FD3**

F. Marinho on behalf of the DUNE collaboration LIDINE 2024 – 26-28<sup>th</sup> August 2024 – São Paulo

27/08/2024



# **DUNE** Experiment



- Intense neutrino beam: 1.2 MW  $\rightarrow$  2.3 MW
- Near Detector system including a LAr TPC
- 4 Far Detector LArTPC modules (70 kton total mass)
  - 1300 km source distance, 1,5 km under surface
- Physics goals
  - Precise neutrino oscillations parameters determination
  - Detection:
    - Galactic core colapse supernovae neutrinos
    - Solar neutrinos
  - Searches:
    - Nucleon decay, Non standard interactions



## DUNE FD1 & 2



**APAs** 

#### 3 F. Marinho | APEX: Optimized vertical drift PDS for DUNE FD3



## **DUNE Phase II**

- Extend frontiers of neutrino physics and astroparticle physics
- Consists of:
  - Third and fourth far detector (FD) modules/fiducial volume increase
  - Upgraded near detector complex
  - Beam power enhancement

| Parameter        | Phase I                   | Phase II                  | Impact        |
|------------------|---------------------------|---------------------------|---------------|
| FD mass          | 2 FD modules (20 kt fidu- | 4 FD modules (40 kt fidu- | FD statistics |
|                  | cial)                     | cial LAr equivalent)      |               |
| Beam power       | $1.2\mathrm{MW}$          | Up to 2.3 MW              | FD statistics |
| ND configuration | ND-LAr+TMS, SAND          | ND-LAr, ND-GAr, SAND      | Systematics   |

- Optimized photon readouts for Phase II VD FD modules
  - Further development of proven solutions from Phase I
    - Performance enhancement, cost-effectiviness

White Paper: arXiv:2312.03130

DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions



## **DUNE Phase II: FD3**

- Extend frontiers of neutrino physics and astroparticle physics
- Low-energy physics (1-10s MeV)
  - Background rejection and lower thresholds
  - Supernova core colapse burts
  - Solar neutrinos
  - Diffused supernova neutrino background
- Beam neutrinos (GeV)
  - Light: Independent energy measurements, timing and position (auxiliary to PID)
  - Energy reconstruction strategies and improved resolutions
  - Potential to improve resolving of 2<sup>nd</sup> oscillation peak and shape-only sensitivity





#### APEX: Aluminum profiles with embedded X-ARAPUCA

- Optical coverage >55% with light trap technology
  - Enhanced light yield (LY) and uniformity of PDS response
- Integrated VD TPC Field Cage + Photon Detector System
- P(S)oF technology for power and signal in/out of the field cage
  - Non-conductive optical fibers, readout electronics on HV surface
- Fully compatible with any VD LArTPC charge readout



arXiv:2312.03130



\* see S. Manthey's talk



#### APEX: Aluminum profiles with embedded X-ARAPUCA

- Simplified, lightweight, and low(er)-cost photodetector
- Optimized photon readout with increased active coverage
- Bulk materials with low-radioactive content





#### APEX: Aluminum profiles with embedded X-ARAPUCA

- Each row of 6 PD modules in an APEX panel is a electrically isolated system
- 1 PD module/9 profiles
  - 5<sup>th</sup> profile: mechanical fastening and electrical reference
    - C-shaped profile: Faraday cage shielding for CE readout boards for the 6 module on horizontal row
  - PoF transmitter and SoF receivers (driver and laser diode) to the PDs via fibers





#### arXiv:2312.03130

8 F. Marinho | APEX: Optimized vertical drift PDS for DUNE FD3



# **APEX: Simulation geometry**





## **APEX: Simulation setup**

| <ul> <li>Photons shot from within voxels.</li> </ul>                                                                                                                                          | Parameter                                                          | Value                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Isotropic direction and polarization</li> <li>Voxel size: 0.5 x 0.5 x 0.5 m<sup>3</sup> *</li> <li>Same optical properties as for FD2<br/>DUNE-VD simulations</li> </ul>             | LAr light yield (mip)<br>Xenon doping in Ar<br>Rayleigh scattering | 25k ph/MeV<br>10 ppm<br>λ (@128 nm) = 1 m                                                                                                                           |
| <ul> <li>LAr refractive index, Rayleigh<br/>scattering, absorption</li> <li>Reflectivity of membrane, anode,<br/>field cage, etc</li> <li>pTP emitted photons are also<br/>tracked</li> </ul> | Absorption                                                         | $\lambda_{R} (@176 \text{ nm}) = 8.5 \text{ m}$<br>$\lambda_{abs} (N_{2} @128 \text{ nm}) = 20 \text{ m}$<br>$\lambda_{abs} (N_{2} @176 \text{ nm}) = 80 \text{ m}$ |
| <ul> <li>All sensors detecting any level of<br/>light for evaluation         <ul> <li>No cut on #pe applied</li> <li>No sensors clustering required</li> </ul> </li> </ul>                    | Tile detecting eff.<br>Reflectivity<br>Field cage                  | 2%<br>70%                                                                                                                                                           |
| * see A. Paudel's talk tomorrow                                                                                                                                                               | Cryostat<br>Anode                                                  | R = 30%, 40% @128 nm, 176 nm<br>R = 6%, 12% @128 nm, 176 nm                                                                                                         |



## **APEX: Light Yield map**



11 F. Marinho | APEX: Optimized vertical drift PDS for DUNE FD3



## **APEX: Light Yield map**



- Xenon light contributes to more uniform LY map
- Total light yield due to backward WLS emissions ~60 %

#### arXiv:2312.03130

LY<sub>ave(min)</sub> scaled up wrt FD2 by a factor of 4(6) A. Abed Abud et al JINST 19 T08004 (2024)





## Low energy deposits: coordinates reconstruction

- Point like events as reasonable assumption for ~MeV scale
- Uniform resolution achieved on all coordinates



#### APEX spatial resolution <sup>1</sup>/<sub>2</sub> lower than FD2

L. Paulucci (DUNE collaboration) 2022 JINST 17 C01067 (2022)



## **APEX: Energy deposits reconstruction**



- Statistical fluctuations on PEs due to detection efficiency (binomial)
- Light yield map segmentation: size similar to expected from calibration

Resolution on low energy deposits reduces by factor ~0.4 lower than FD2

L. Paulucci (DUNE collaboration) 2022 JINST 17 C01067 (2022)



### Prototypes

- Series of tests to further develop the APEX concept
  - First round @CERN 2024:
    - Impact on drift field uniformity due to insulating material between FC electrodes. number electrodes vs pitch
  - Ton-scale TPC prototype @CERN (2024/25):
    - Up to eight full-size PD modules, for mechanical and cryogenic tests.
    - PD module w/ electronic chain: constructed and fully tested before integration.
  - A larger-sized demonstrator with O(100) P(S)oF in/out fibers (@FNAL 2024/25)
  - Full-sized APEX PD-instrumented field cage to be deployed in VD ProtoDUNE cryostat (@CERN 2025/26)





#### Conclusions

- We presented the main features of the APEX concept
  - An optimized PD system based on previous DUNE VD R&D
  - Suggested/indicated as reference design option for FD3
- Enhancement of PDS capabilities should impact physics
- Monte Carlo simulations and analyses undergoing
  - Detector performance: High light yield and uniform response
  - Many physics aspects under investigation (MeV-GeV)
- Prototyping stages stablished and advancing (2024-2026)

