# ASTROCENT





# Quality Control of PEN wavelength shifters for DarkSide-20k veto

Sarthak Choudhary<sup>1</sup>

with André Cortez<sup>1</sup>, Marcin Kuźniak<sup>1</sup>, Maciej Kuźwa<sup>1</sup>, Grzegorz Nieradka<sup>1</sup>, T. Sworobowicz<sup>1</sup>, Tomasz Szczęśniak<sup>2</sup>, Łukasz Świderski<sup>2</sup>

On behalf of the DarkSide-20k Collaboration

1. AstroCeNT, Nicolaus Copernicus Astronomical Center, PAN

2. National Center for Nuclear Research







Foundation for European Union Polish Science



NATIONAL SCIENCE CENTRE

# Outline

- I. Introduction
- II. ArGSet
  - ✓ SiPM characterization
- III. Data Analysis
  - $\checkmark$  Event selection cuts
  - ✓ Argon triplet lifetime verification
  - ✓ Full WF charge distribution
- IV. Summary and Conclusion

### DarkSide-20k neutron veto



#### DarkSide-20k neutron veto







#### **Veto Working Principle**

- Neutrons are moderated in the acrylic shell and then captured by Hydrogen.
- H emits γ-rays 2.2 MeV.
- γ-rays interact in the liquid argon buffers.
- LAr scintillation light is wavelength shifted and detected by ~1920 SiPMbased photosensors.

Slide courtesy: I. Ahmad (IDM 2024)

• Neutrons can mimic WIMP signal. PSD is

The UAr volume between the SS vessel and

PMMA serves as a veto volume with ~40 cm

useless against neutron events.

0

thickness.

# **PEN** rolls

Polyethylene naphthalate (PEN) is proposed alternate material to tetraphenyl butadiene (TPB).

#### □ PEN rolls:

More than 4000 m2 of PEN procured and available at AstroCeNT in form of rolls. Sufficient excess material available for quality control tests.

#### □ Roll:

Length = 2 kmWidth = 1.2 m

□ The rolls undergo uniformity test.



## **PEN** quality control strategy

- Keep witness samples from each sheet of PEN to be installed in the detector
- □ Before sheet production test the uniformity of the roll with ~50 samples:
  - Each sample to be measured at 190 nm excitation with a spectrophotometer equipped with an integrating sphere
  - Subset of samples to be tested with 128 nm excitation at room temperature
  - Several samples to be tested at 128 nm and in cryogenic conditions (currently the main bottleneck)
- Correlate cryogenic measurement result with other methods



# **ArGS**et

- An ArGon Gas Setup for measurement of Wavelength Shifting Efficiency (WSLE)
- WLSE depends on the excitation wavelength AND temperature
- ArGSet is an alpha-excited gaseous Ar cell with a cryogenic stage





### **VI** curve



# PhotoElectron Charge Spectrum (fingerplot)



#### **AR** filter optimization



#### Raw waveform



### **Event selection cuts**

- Events selection cuts are based on following quantities:
- 1<sup>st</sup> cut: Sum of PreTrigger window
- 2<sup>nd</sup> cut: Centre of Mass for waveform
- 3<sup>rd</sup> cut: Time separation between pulses in SiPM-1 and SiPM-2



#### **Cross check of gaseous Ar triplet time constant**



# Comparison of charge distribution before and after applying the cuts



# Charge distribution post cut



 Number of detected photoelectrons from an alpha scintillation event is consistent with expectations



## Status

- Following the SiPM calibration, collected cryogenic data for 4 PEN samples and TPB reference samples (twice)
- Revealed instrumental issues:
  - $\circ\,$  Intermittent noise efficiently removed with cuts in most of the runs likely a grounding issue to be investigated and fixed
  - $\,\circ\,$  Asymmetry of signal collected in both SiPMs varies from run to run
    - Could be a hint of Ar pressure different between runs
    - Dangerous, as it can move the position of the Bragg maximum/primary VUV light source
    - Under investigation, pressure transducer to be added
    - Working out a correction for the collected data
  - $\circ~$  Temperature stability acceptable for several hours of data taking
- Comparison of samples as soon as the varying assymetry issue is understood
- For now planning to proceed with the room temperature and near UV measurements



# Summary

- A low temperature setup for measurement of wavelength shifting efficiency at VUV wavelength is presented
  - $\circ~$  Overall the light yield and performance consistent with expectations
- SiPM calibration and analysis flow is in now place
- The application for quality control of PEN wavelength shifters is discussed:
  - o Several samples already measured, but more work on systematic needed for a robust comparison
  - $\circ~$  Better control/monitoring of gaseous Ar pressure is likely needed
- Starting to characterize larger quantities of PEN samples:
  - $\circ~$  With near UV excitation at room temperature
  - $\circ~$  With VUV at room temperature

# **Thank You**

# back up slides

#### Raw vs AR filtered WF



### **AR** filtered



## Charge distribution post cut

|     |      | Fit 1                      | to di           | strib | utio   | n of                      | full w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /f sum |             |
|-----|------|----------------------------|-----------------|-------|--------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|
| 100 | stat | istics = 68<br>ced chisqr  | 515.0<br>= 2.48 |       |        | a superior and the second | a the state of the |        | 0<br>fit    |
| 0-  |      | -2                         | -1              | Ö     | 1      | 2                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4      | 5<br>1e6    |
| 200 | stat | istics = 658<br>ced chisqr | 818.0<br>= 3.05 |       |        | $\Lambda$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1<br>fit    |
| 0   | -1.  | 00-0                       | .75-0           | .50-0 | .25 0. | 00 0.                     | 25 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0.75 | 1.00<br>1e6 |
| 100 | stat | istics = 63<br>ced chisqr  | 357.0<br>= 1.42 |       |        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2<br>fit    |
| 0   | -1.  | 00-00                      | .75–0           | .50-0 | 25 0.  | 00 0.                     | 25 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0.75 | 1.00<br>1e6 |

|                 | Ch 0          |
|-----------------|---------------|
| Mean            | 2.286e+0<br>6 |
| N <sub>pe</sub> | 1462          |

22