

Exploring N₂ Capturing in Liquid Argon using Li-FAU Mol Sieve in the Iceberg Cryostat

Pedro Bianchi Neto^a Renato Soccol Junior^a Flor de Maria Blaszczyk^e Sergey Koshelev^e Alan Hahn^e Daniel Correia^{d,e} Dilson Cardoso^c Roza Doubnik^e Mark Adamowski^e David Montanari^e Thiago P. M. Alegre^b Ana Amélia Machado^b Ettore Segreto^b José Mansur Assaf^c H. da Motta^d P. G. Pagliuso^b Dirceu Noriler^a

- ^a School of Chemical Engineering, UNICAMP, Brazil
- ^b "Gleb Wataghin", Institute of Physics, UNICAMP, Brazil
- ^cAdvanced Materials and Energy Research Center, UFSCar, Brazil
- ^d Brazilian Center for Research in Physics, Rio de Janeiro, Brazil.
- ^e Fermi National Accelerator Laboratory, Illinois, USA.

Background

The DUNE

The Long-Baseline Neutrino Facility (LBNF), located at the Sanford Underground Research Facility in Lead, South Dakota, hosts the Deep Underground Neutrino Experiment (DUNE).

 the cryostats contain 17,500 metric tons of ultra-pure liquid argon (LAr) each (~ 5 Olympic pools)

```
How pure should the argon be for the experiment?
Detector 1 → < ~ 100 ppt (or ~ 1.4 ml of oxygen equivalent)</li>
Detector 2 → < ~ 50 ppt (or ~ 0.7 ml of oxygen equivalent)</li>
```


Motivation

How do you reach such pure argon?

Contaminants in argon **significantly affect** experimental results:

• N_2 , O_2 and H_2O

- The argon is purified using a filtering media (which captures O₂ and H₂O);
- As the typical filters can't remove N₂, it must be kept low in the argon purchasing specification.

An effective removal of N_2 impurities during liquid argon circulation was not known and it is desirable.

- A systematic study incorporating collaborative materials and methods, and combining numerical and experimental analysis;
- Li-FAU zeolite.

Experiments

Liquid argon purification

Experiments at Unicamp – Purification Liquid Argon Cryostat (PuLArC)

- ~ 1.2 kg of Li-FAU zeolite adsorbent;
- N₂ contamination reduction: 20-50 ppm to 0.1-1.0 ppm (1-2 hours of active circulation)

Experiments at Fermilab – Integrated Cryogenic Experiment for Beam Energy Research and Generation (ICEBERG) Cryostat

- ~ 3 kg of Li-FAU zeolite adsorbent;
- N₂ contamination reduction: ~5 ppm to <1 ppm (96-hour cycles without active circulation).
- calibrated gas analyzer monitor N₂ dissolved in LAr.

Measure concentration of N_2 dissolved in LAr with passing time: Recontamination after each cycle.

Mathematical Model

How was the system modeled?

Transient mass balance in fluid phase, intra-particle, solid phase, and storage tank modeling.

Hypotheses:

isothermal system;

Intra-particle fluid-phase

 $\frac{\partial Y_{i}}{\partial t} = \frac{K_{L}a_{V}}{\epsilon_{p}}(C_{i} - Y_{i}) - \rho_{S}\frac{(1 - \epsilon_{p})}{\epsilon_{p}}\frac{\partial q}{\partial t}$

constant physical properties;

 $\frac{\partial C_{i}}{\partial t} = D_{L} \frac{\partial^{2} C_{i}}{\partial z^{2}} - v_{z} \frac{\partial C_{i}}{\partial z} - \frac{(1 - \epsilon_{b})}{\epsilon_{b}} K_{L} a_{V} (C_{i} - Y_{i})$

 $\frac{\partial q_i}{\partial t} = \sum_{i=1}^{NC} \frac{\partial f_{eq}(Y_i)}{\partial Y_i} \frac{\partial Y_i}{\partial t} \qquad f_{eq}(Y_i) = \frac{K_{RP} Y_i}{1 + a_{RP} Y_i^g}$

plug flow;

Fluid-phase

Solid-phase

- constant mass flow;
 - uniform bed porosity;
- well-mixed tank.

Mathematical Model

Closure equations

Adsorption isotherm:

Mass transfer coefficient :

Model Solution

PuLarC parameters optimization

PuLarC simulation conditions:

- simulation 2 cycles (media is not regenerated before the second cycle);
- $C_{N_2,1} = 40 \text{ ppm}$
- $C_{N_2,2} = 16 \text{ ppm}$
- Q = 4 L/min
- tank volume: 0.14 m³
- media level: 29 cm
- bed diameter: 95.5 cm
- bed porosity: 0.38
- $\rho_{\rm S} = 936 \, \rm kg/m^3$
- $d_p = 2 mm$

Model Solution

Iceberg simulation with PuLarC parameter

Iceberg simulation conditions:

- simulation 3 cycles (media is not regenerated before the second and third cycles);
- $C_{N_2,1} = 5.68 \text{ ppm}$
- $C_{N_2,2} = 4.48 \text{ ppm}$
- $C_{N_2,1} = 7.54 \text{ ppm}$
- Q = 0.61 L/min
- tank volume: 2.5 m³
- media level: 47 cm
- bed diameter: 12 cm
- bed porosity: 0.38
- $\rho_{\rm S} = 936 \, \rm kg/m^3$
- $d_p = 2 \text{ mm}$

Isotherm parameters	
K _{RP}	1.69 10 ⁶
a _{RP}	3.47 10 ⁷
g	0.911

Model Solution

Iceberg simulation with PuLarC parameter

Iceberg simulation:

- simulation 20 cycles (media is not regenerated before each cycle);
- $C_{N_2,in} = 6 \text{ ppm}$
- Q = 0.61 L/min
- tank volume: 2.5 m³
- media level: 47 cm
- bed diameter: 12 cm
- bed porosity: 0.38
- $\rho_S = 936 \text{ kg/m}^3$
- $d_p = 2 \text{ mm}$
- Simulation stops when:

$$\frac{\mathrm{dC}_{\mathrm{N}_2}}{\mathrm{dt}} < 10^{-8} \left(\frac{\mathrm{kg}}{\mathrm{m}^3 \mathrm{s}}\right)$$

$f_{eq}(Y_i) =$	$= \frac{K_{RP} Y_i}{1 + a_{RP} Y_i^g}$
Isotherm parameters	
Крр	1.69 10 ⁶

Isotherm parameters		
K _{RP}	1.69 10 ⁶	
a _{RP}	3.47 10 ⁷	
g	0.911	

Final Remarks

Conclusion and Outlook

- The successful testing of Li-FAU as an effective adsorbent for N₂ impurities marks a significant advancement for neutrino experiments, improving LAr quality. (see recent article at <u>https://news.fnal.gov/2024/08/brazilian-researchers-discover-new-way-to-purify-liquid-argon-for-neutrino-experiments/</u>)
- Promising results from the PuLArC and Iceberg cryostats Li-FAU could be a viable alternative to traditional purification (molecular sieve 4A) in large-scale LAr cryostats.
- The purification media will improve the quality of the LAr used in experiments + allow for removing N₂ contaminants if air is accidentally introduced into the cryostat due to equipment malfunction.
- A mathematical model was proposed for the adsorption process of nitrogen using the Li-FAU in liquid;
- The proposed model was able to match the experimental results obtained with the ICEBERG cryostat;

References

[1] Technical Notes CRYOFRABR 001/2021: Energy and Mass Balance for LBNF Far Site Argon Circulation and Purification Systems. Dirceu Noriler, Thiago P. M. Alegre et al., EDMS, CERN, 2591041.

[2] Technical Notes CRYOFRABR 002/2021: Activated-copper-coated alumina granules synthesis. Rosembergue G. L. Gonçalves, Elisabete M. Assaf, J. Mansur Assaf et al., EDMS, CERN, 2621901.

[3] Technical Notes CRYOFRABR 003/2021: Determination of nitrogen physisorption properties by zeolites for argon purification. Dilson Cardoso et al, EDMS, CERN, 2735051.

[4] Technical Notes CRYOFRABR 004/2021: A cryostat for liquid argon purification. Magda B. Fontes, K. A. Brant et al., EDMS, CERN, 2731862.

[5] Technical Notes CRYOFRABR 005/2021: The Purity Monitor Components and Assembly. A. A. Machado, H. F. Gatti et al., EDMS, CERN, 2909384.

[6] Technical Notes CRYOFRABR 006/2021: Multi-Component Adsorption Modeling. Dirceu Noriler, Thiago P. M. Alegre et al., EDMS, CERN, 2636487.

References

[7] Technical Notes CRYOFRABR 007/2021: Activated-copper-coated alumina granules synthesis. Elisabete M. Assaf, J. Mansur Assaf, Rosembergue G. L. Gonçalves et al., EDMS, CERN, 2735052.

[8] Technical Notes CRYOFRABR 008/2021: Effects of zeolite particle size on Nitrogen Adsorption Isotherms. Dilson Cardoso et al, EDMS, CERN, 2735053.

[9] Technical Notes CRYOFRABR 009/2021: Nitrogen Adsorption Modeling. Dirceu Noriler, Thiago P. M. Alegre et al., EDMS, CERN, 27331861.

[10] Technical Notes CRYOFRABR 010/2023: Innovative Proposal for N₂ Capturing in Liquid Argon Using the Li-FAU Molecular Sieve. Dilson Cardoso, P. G. Pagliuso et al., EDMS, CERN, 2884594.

[11] Technical Notes CRYOFRABR 011/2023: Proposal for O₂ Capturing in Liquid Argon using the R-LDH Innovative media. Rosembergue G. L. Gonçalves et al., EDMS, CERN, 2909375.

[12] Technical Notes CRYOFRABR 012/2024: Exploring N₂ Capturing in Liquid Argon using Li-FAU Mol Sieve in the Iceberg Cryostat. Flor de Maria Blaszczyk, S. Koshelev et al., EDMS, CERN, 3121951.

Exploring N₂ Capturing in Liquid Argon using Li-FAU Mol Sieve in the Iceberg Cryostat

Thank You for your attention!