New Dark Matter Search Results from the LUX-ZEPLIN Experiment

Amy Cottle, UCL

LZ COLLABORATION

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Zürich

Thanks to our sponsors and participating institutions! 38 Institutions: 250 scientists, engineers, and technical staff

Science and Technology **Facilities Council**

DM SEARCHES WITH XENON DETECTORS

- Weakly Interacting Massive Particles (WIMPs) \rightarrow key galactic DM candidate SM SM DM DM
- Direct detection via scatters with target nuclei
 - Xe experiments driving sensitivity to WIMPs in last 15 years

WHY XENON?

- Coherent scalar WIMPnucleus scattering ($\sigma \propto A^2$)
- Highest charge & light yields of all noble elements
- Commercially available & easily purified
- Dense \rightarrow short attenuation lengths - self-shielding
- Scalable \rightarrow potential for large target mass

Amy Cottle - LIDINE '24

LZ + Predecessors

ZEPLIN-III 12 kg (7 kg) 2008

LUX 250 kg (100 kg) 2013

LZ 7000 kg (5500 kg) 2022-

TIME PROJECTION CHAMBER (TPC)

- Interactions in the xenon create
 - Light prompt scintillation S
 - Charge electrons drifted and extracted into gas \rightarrow proportional scintillation - S2
- Time separation between SI & S2 = drift time
- Excellent 3D position reconstruction (~mm)
- Distinguish between single scatter (SS) and multiple scatter (MS) interactions
- S2:SI ratio discriminate electronic recoils (ERs) from potential WIMP nuclear recoils (NRs)

Electrons

Incoming Particle

S2

Amy Cottle - LIDINE '24

Outgoing

Particle

THE LZ EXPERIMENT

Outer veto detector: Gd-doped liquid scintillator

LXe TPC

LXe "Skin" veto detector

- Based at the Sanford Underground Research Facility (SURF) in Lead, SD
- 7 t active dual-phase xenon TPC
- Skin & outer detector (OD) veto systems \rightarrow tag gamma rays & neutrons

THE LZ EXPERIMENT

TOP PMT ARRAY EXTRACTION REGION

TOP SKIN

TPC FIELDCAGE (ACTIVE XENON)

CATHODE GRID **REVERSE-FIELD REGION BOTTOM PMT ARRAY**

TPC Field Cage

Bottom Side Skin PMTs

Instrumented OD

Bottom Dome Skin PMTs

TPC Underground

2022 WS2022 Starts

Installation Complete

Commissioning Begins

WS2024

Starts

First WIMP Search Results (WS2022)

RECAP OF WIMP SEARCH 2022 (WS2022)

• 60 live-day analysis using data from demonstration run with no blinding or salting

- Minimum cross-section of $\sigma_{SI} = 9.2 \times 10^{-48} \text{ cm}^2$ for WIMP mass of 36 GeV/c²

Backgrounds extensively assessed, with high contribution from cosmogenic activation

WIMP SEARCH 2024 (WS2024)

- 220 live-day exposure using data from March '23 to end March '24

• Major milestones: bias mitigation ("salting") began July 3rd; circulation state change July 12th Amy Cottle - LIDINE '24

WS2024 SCIENCE RUN CONDITIONS

- Drift field of 97 V/cm ightarrow
- Extraction field of 3.4 kV/cm (in liquid)
- Continuous purification at 3.3 t/day through hot getter system
- Electron lifetime (measure of purity) at >8 ms for most of the run
- >95% science data-taking efficiency throughout the run
- Science data spatio-temporally corrected using calibrations

mS

Electron Lifetime

CALIBRATIONS

- Backgrounds predominantly ERs; lacksquareWIMPs produce NRs
- Radiolabelled methane (³H, ¹⁴C) injection to calibrate ER band
 - Spatially homogenous β source
- DD neutron generator (NR band)
 - Mono-energetic 2.45 MeV neutrons
- 99.8% discrimination of beta backgrounds under flat NR band median achieved

[[phd]]

(S2c

(light gain) = 0.112 + - 0.002 phd/photongl g2 (charge gain) = 34.0 +/- 0.9 phd/e⁻

BIAS MITIGATION

- "Salting" fake signal events injected randomly during science data-taking
- Salt created using SIs & S2s from sequestered calibration data
- Parent distribution exponential WIMP recoil spectrum + flat pedestal
- Rate capped by WS2022 cross-section
- Parameters unknown when analysing - \rightarrow unsalting performed after all inputs are defined for statistical inference

XENON FLOW

 Circulation & cooling systems allow control of temperature & xenon flow

High-mixing state More turbulent flow \rightarrow uniform distribution of injected calibration sources

Low-mixing state Slower, laminar flow

- ²²²Rn emanates from detector materials
- $^{222}Rn^{-218}Po pairs (T_{1/2} = 3.1 min)$ \rightarrow used to map the flow vectors

LZ Preliminary

RADON TAG

- "Naked" 214 Pb β decays = biggest ER background
- Simulations of neutral and charged ²¹⁴Pb movement using flow and field maps \rightarrow use to create a "radon tag" in low-mixing state
- Define co-moving volumes around "streamlines" where ²¹⁴Pb is likely to be found
 - Each volume active 81 mins ($\sim 3x^{214}PbT_{1/2}$)
- Tagged & untagged data both in WIMP analysis

	% ²¹⁴ Pb of Total	% Volume of To
Tagged	60 ± 4	I 5
Untagged	40 ± 4	85

Effective untagged ²¹⁴Pb activity of 1.8 \pm 0.3 μ Bq/kg (compared to 3.9 \pm 0.6 μ Bq/kg in total exposure)

ELECTRON CAPTURES

• ¹²⁷Xe & ¹²⁵Xe decay by electron capture (EC)

- Produced by cosmogenic & neutron activation → much lower activity than WS2022
- L-shell EC (5.2 keV) relevant for WIMP search
 - Auger/X-ray cascade \rightarrow more nucleated energy deposition than β = more NR-like i.e. charge-suppressed ER response
 - Charge suppression first measured in XELDA PRD 104, 112001 ('21)
 - In-situ measurement in LZ for WS2024: $Q_L/Q_\beta = 0.86 \pm 0.01$

124XE DOUBLE ELECTRON CAPTURE (DEC)

• "World's rarest decay" - $T_{1/2} = (1.09 \pm 0.14_{stat} \pm 0.05_{sys}) \times 10^{22}$ yr (LZ preliminary measurement*)

• KX-shell measured; LM (6.0 keV) & LL-shell (10.0 keV) relevant for WIMP search *Paper in preparation

MODELLING 124XE LM- & LL-SHELL DEC

Expect 7.1 (LM) + 12.3 (LL) = 19.4 counts with 20% uncertainty

• LM modelled with same as single L-shell charge suppression

LL expected to be further charge-suppressed due to higher ionisation density i.e. $Q_{LL}/Q_{\beta} < Q_{L}/Q_{\beta}$

• Vary Q_{LL}/Q_{β} in fitting of our data:

 $0.65 < Q_{LL}/Q_{\beta} < 0.87$

2x L-shell ionization density

MODELLING 124XE LM- & LL-SHELL DEC

Best-fit value of $Q_{LL}/Q_{\beta} = 0.70 \pm 0.04$

Amy Cottle - LIDINE '24

Expect 7.1 (LM) + 12.3 (LL) = 19.4 counts with 20% uncertainty

• LM modelled with same as single L-shell charge suppression

LL expected to be further charge-suppressed due to higher ionisation density i.e. $Q_{LL}/Q_{\beta} < Q_{L}/Q_{\beta}$

• Vary Q_{LL}/Q_{β} in fitting of our data: $0.65 < Q_{LL}/Q_{\beta} < 0.87$

ACCIDENTAL COINCIDENCES

- Unrelated SIs & S2s can accidentally combine to produce single scatter events \rightarrow could mimic a WIMP signal
- Rate: population of definite accidental events with unphysical drift time >1 ms
- Distribution: fake events constructed from lone SI & S2 pulse waveforms
- Analysis cuts developed to combat observed pulse/event pathologies
 - >99.5% rejection efficiency
 - WS2024 counts: 2.8 ± 0.6

NEUTRONS & OD

- Neutrons induce NRs \rightarrow dangerous background
- 17 tonnes Gd-loaded scintillator in OD
 - High thermal neutron capture cross-section
 - Release of ~8 MeV gammas from capture
- \rightarrow delayed OD veto cut to reject neutrons
- AmLi neutron calibration-derived neutron veto efficiency = 89 ± 3 %
- Simulated neutron veto efficiency for radiogenic, background neutrons = $92 \pm 4 \%$ \rightarrow used for neutron constraint in final analysis

FIDUCIAL VOLUME (FV)

Events delayed-tagged by the vetoes

[ms]

- FV defined to avoid higher background rates at TPC edges (self-shielding)
- TPC radial edge curved due to electric field \rightarrow see Sparshita Dey's talk at 15:55 today
- FV definition:
 - 71 μ s < drift time < 1030 μ s
 - Azimuthally & drift time-dependent radial cut chosen to ensure <0.01 wall background counts in the FV
- Calculated fiducial mass of 5.5 ± 0.2 t

ROI & ANALYSIS CUT SUMMARY

- Region of interest (ROI)
 - 3 < SIc < 80 photons detected (phd); three-fold PMT coincidence
 - S2 > 645 phd (14.5 electrons); $\log |0| (S2c) < 4.5$
- Cuts developed on non-WIMP ROI data
- Event selection criteria
 - FV, ROI, single scatter cuts
 - Veto detector anti-coincidence
 - SI- & S2-based cuts

BACKGROUNDS MODEL EXPECTATIONS

• Total expected NR counts in WS2024: 0. 8 from CEVNS (no neutrons - in-situ fit constraint) Amy Cottle - LIDINE '24

WS2024 DATA - SALTED

- Final exposure of 220 live days * 5.5 tonnes = 3.3 tonne years
- 1227 events remaining

WS2024 DATA - SALTED

- Final exposure of 220 live days * 5.5 tonnes = 3.3 tonne years
- 7 salt events pass all analysis cuts out of 8 total injected in WS2024 \rightarrow inline with evaluated signal efficiency

WS2024 DATA - SALTED

- Final exposure of 220 live days * 5.5 tonnes = 3.3 tonne years
- 7 salt events pass all analysis cuts out of 8 total injected in WS2024 \rightarrow inline with evaluated signal efficiency
- **1220 events** remain after unsalting
- Statistical analysis of these data in observed $log_{10}(S2c)$ -SIc space \rightarrow no post-unsalting changes to model

WS2024 DATA - RADON TAGGED VS UNTAGGED

0.3 tonne years

Amy Cottle - LIDINE '24

1.8 tonne years

COMBINED LIKELIHOOD

Exposures in Each Sample in Tonne Years

Six samples combined in likelihood for final statistical analysis

- WS2024 represented by samples 1-4
- \rightarrow provide a direct constraint on the neutron background rate
- WS2022 sample (6) unmodified since first result \rightarrow push sensitivity further

	4	5	6
ed	Radon Untagged	Skin/OD Vetoed	WS2022
	8. I	n/a	0.9

• Skin/OD vetoed sample (5) - full 3.3 tonne years of WS2024, but failing veto coincidence cuts

WS2024 FIT RESULTS

Component	Expected Events	Best F
²¹⁴ Pbβ decays	743 ± 88	733
⁸⁵ Kr + ³⁹ Ar + detector γs	162 ± 22	161
Solar v ERs	102 ± 6	10
²¹² Pb + ²¹⁸ Po β decays	62.7 ± 7.5	63.7
³ H + ¹⁴ C β decays	58.3 ± 3.3	59.7
¹³⁶ Xe 2vββ decay	55.6 ± 8.3	55.8
¹²⁴ Xe DEC	19.4 ± 3.9	21.4
¹²⁷ Xe + ¹²⁵ Xe EC	3.2 ± 0.6	2.7
Atm. v CEvNS	0.12 ± 0.02	0.12
⁸ B + hep v CEvNS	0.06 ± 0.01	0.06
Det. Neutrons		0.
Accidentals	2.8 ± 0.6	2.6
Total	1210 ± 91	120

it Events

- ± 34
- ± 21
- 2 ± 6
- ± 7.4
- ± 3.3
- ± 8.2
- ± 3.6
- ± 0.6
- ± 0.02
- ± 0.01
- 0^{+0.2}
- ± 0.6
- 3 ± 41

- Best fit of zero WIMPs at all masses tested (9 GeV/ c^2 - 100 TeV/ c^2)
- Good agreement with background-only hypothesis in all spaces examined

WS2024 FIT RESULTS

Component	Expected Events	Best F
²¹⁴ Pbβ decays	743 ± 88	733
⁸⁵ Kr + ³⁹ Ar + detector γs	162 ± 22	161
Solar v ERs	102 ± 6	
²¹² Pb + ²¹⁸ Po β decays	62.7 ± 7.5	63.7
³ H + ¹⁴ C β decays	58.3 ± 3.3	59.7
¹³⁶ Xe 2vββ decay	55.6 ± 8.3	55.8
¹²⁴ Xe DEC	19.4 ± 3.9	21.4
¹²⁷ Xe + ¹²⁵ Xe EC	3.2 ± 0.6	2.7
Atm. v CEvNS	0.12 ± 0.02	0.12
⁸ B + hep v CEvNS	0.06 ± 0.01	0.06
Det. Neutrons		0.
Accidentals	2.8 ± 0.6	2.6
Total	1210 ± 91	120

it Events

- ± 34
- ± 21
- 2 ± 6
- ± 7.4
- ± 3.3
- ± 8.3
- ± 3.6
- ± 0.6
- ± 0.02
- ± 0.01
- **0**^{+0.2}
- ± 0.6
- 3 ± 41

Amy Cottle - LIDINE '24

32

WS2024-ONLY SPIN-INDEPENDENT LIMIT

Two-sided profile likelihood ratio test statistic

- Power constrained at $-I\sigma$ as per recommended conventions EPIC 81,907 ('21)
- Under-fluctuation in accidental backgrounds in the region of largest overlap with WIMP signal PDF
- WS2024-only best limit of $\sigma_{SI} = 2.3 \times 10^{-48} \text{ cm}^2 \text{ at } 43 \text{ GeV/c}^2$

WS2024+WS2022 SPIN-INDEPENDENT LIMIT

Two-sided profile likelihood ratio test statistic

Power constrained at $-I\sigma$ as per recommended conventions EPJC 81, 907 ('21)

Extra under-fluctuation from WS2022 result

Best limit from combined analysis of $\sigma_{SI} = 2.2 \times 10^{-48} \text{ cm}^2 \text{ for } 43 \text{ GeV/c}^2$

Amy Cottle - LIDINE '24

34

WS2024+WS2022 SPIN-DEPENDENT LIMITS

WIMP-Neutron Scattering

Uncertainty bands represent the theoretical uncertainty on the Xe nuclear structure factor

Amy Cottle - LIDINE '24

WIMP-Proton Scattering

CONCLUSIONS

- New world-leading WIMP search limits achieved in LZ with WS2024+WS2022 4.2 tonne year exposure exceeding previous best constraints by >4 times
 - Radon tag developed and used for the first time: 60% reduction in main ER background
 - First observation of charge-suppressed ¹²⁴Xe DEC
- LZ will take data until 2028, towards 1000 live days
 - Multiple other physics channels to explore e.g. ⁸B CEVNS, neutrinoless double beta decay
 - LZ is discovery-ready for WIMPs

MORE ON LZ

Selected papers already available:

- First dark matter results from the LZ Experiment \bullet PRL 131, 041002 ('23)
- Background Determination for LZ Dark Matter Experiment ightarrowPRD 108, 012010 ('23)
- Search for new physics in low-energy electron recoils from the first LZ exposure <u>PRD 108, 072006 ('23)</u>
- First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LZ PRD 109,092003 ('24)

<u>https://lz.lbl.gov/</u>

@lzdarkmatter

Back Up Slides

WS2024 DATA - UNSALTED; RADON TAGGED

<u>3.3 tonne years</u>

Amy Cottle - LIDINE '24

0.3 tonne years

IO TEV/C² WIMP

WS2024 DATA PIE PLOT

¹²⁴XE LL-SHELL COMPARED TO DARK MATTER SPECTRA

WIMP spectra normalised to LZ's 4.2 tonne year median 3σ discovery potential:

• 9 events @ 40 GeV

• I l events @ 1000 GeV

GOODNESS OF FITS IN KEY 124XE REGION

60 < S1c < 70138 counts

σ	Expt.	Obs.	p_{LR}	p_{MC}	p_{Pois}
[-5, -4]	0.11	1	0.1	0.092	5.2e-03
[-4, -3]	0.86	4	0.014	8.6e-03	2.0e-03
[-3, -2]	6.1	7	0.74	0.84	0.28
[-2, -1]	23	25	0.77	0.85	0.34
[-1, 0]	51	41	0.14	0.25	0.087
[0, 1]	51	37	0.030	0.063	0.02
[1, 2]	19	22	0.62	0.66	0.26
[2, 3]	2.4	1	0.31	0.45	0.31

LZ Preliminary

 $Q_{LL}/Q_{\beta} = 0.87$

(i.e. L-shell suppression)

60 < S1c < 70138 counts

σ	Expt.	Obs.	p_{LR}	p_{MC}
[-5, -4]	0.44	1	0.47	1.0
[-4, -3]	2.6	4	0.42	0.54
[-3, -2]	7.4	7	0.89	1.0
[-2, -1]	21	25	0.52	0.52
[-1, 0]	50	41	0.17	0.33
[0, 1]	52	37	0.026	0.063
[1, 2]	19	22	0.63	0.68
[2, 3]	2.4	1	0.29	0.43

LZ Preliminary

$Q_{LL}/Q_{\beta} = 0.65$

(i.e. double L-shell ionisation density)

ACCIDENTALS MODEL & SIDEBAND COMPARISONS

Comparing manufactured accidental events and unphysical drift accidentals

Good agreement before application of SI- and S2-based cuts

CHECKS OF ACCIDENTALS IMPACT ON LIMIT

1. Remove accidental rate constraint: best fit drops $2.6 \rightarrow 1.4$

- 2. Remove constraint & outlier event: best fit drops $1.4 \rightarrow 0$
 - Outlier event holds model up, over subtracting in the WIMP region
- 3. Adding fake events props limit back up

→ under-fluctuation of accidental events in the WIMP region

- Amy Cottle LIDINE '24

45

- Rejection of live time with detector instabilities, high TPC pulse rates
- 86% live time remaining after all analysis live time exclusions \rightarrow mainly driven by improved live time retention of e-train veto

E-TRAIN VETO

- Large S2s induce pulse "trains" lasting 100s of ms, much longer than the event window
- High pulse rates can lead to piled-up photon or electron pulses that mimic SIs and S2s, thus contributing to accidental coincidence backgrounds
- Removal of periods after S2s (e-/ph trains) excludes ~10% of our live time in WS2024 (compared to ~30%) for WS2022)
- Improvement due to optimisations & smaller S2s (= shorter exclusions)

WS2024 VS WS2022 CONDITIONS

	Analysis Live Time (Days)	Drift Field [V/cm]	Extraction Field (in liquid) [kV/cm]	Single Electro Size [phd]
WS2024	220	97	3.4	44.5
WS2022	60	193	4.4	58.5

- Lowered gate-anode ΔV by 0.5 kV to reduce spurious electron emissions
- long-term, stable running of the detector

Amy Cottle - LIDINE '24

Optimisations performed following WS2022: trigger configuration; electrode voltages; circulation

Optimised drift field to 97 V/cm to maintain similar ER/NR discrimination whilst enabling

NEST MODEL OF ER LEAKAGE VS DRIFT FIELD

arXiv:2211.10726

WS2022 DATA

- 335 events after all cuts
- PDFs created with energy deposit + detector response simulations*
- Profile likelihood ratio (PLR) analysis

Key

- 1 & 2-Sigma Contours
- Post-fit total background distribution
- ³⁷Ar
- ⁸B
- 30 GeV/c² WIMP
- NR band from DD

4.50 4.25 4.00 [[phd]] 3.75 $\log_{10}(S2c$ 3.50 3.25 3.00 2.75

*j.astropartphys.2020.102480

WS2022 LIMIT

- Two-sided PLR search with power-constrained limit defined using rejection power
- Minimum cross-section of $\sigma_{SI} = 9.2 \times 10^{-48} \text{ cm}^2 \text{ for WIMP}$ mass of 36 GeV/c²
- No evidence for WIMPs

Key

- Observed limit
- Median expected sensitivity

