

Advancements in SiPM Technology for Cryogenic Detectors for Dark Matter and Neutrino Research

Francesco Di Capua

Università degli Studi di Napoli «Federico II» di Napoli and INFN (Italy)

Content

- SiPM and its advantages
- SiPM characteristics in cryogenic environment
- Experiments: past, in construction and future detectors

Silicon Photomultipliers (SiPM)

- 2D array of single photon avalanche diodes (SPADs)
 - PN junctions operated in **Geiger mode**: reverse bias above breakdown voltage
 - SPAD signal is saturated, same signal when fired by photon
- SPADs tipically connected in parallel
 - Parallel through a decoupling resistor which is aslo used for **quenching** avalanches in single cells
 - Each array of SPADs is readout as one channel
 - Signal is proportional to number of photons detected (SPADs fired)

Excellent photon counting...and many other advantages

SiPMs in last 30 years becomes very popular in particular physics:

- Compact and mechanical robust
- Low bias voltage (<100 V)
- High Gain and high Quantum Efficiency (~50%)
- Geiger mode operation provides sub-nanosecond timing
- Excellent SNR, high single photon resolution
- Low radioactivity
- Not damaged when exposed to light
- No aging

Under improvements

- Lower dark rate (continuously improving)
- Lower optical cross-talk
- Improving VUV sensitivity
- Increasing size
- Radiation hardness

Photodetection and Noise sources in SiPMs

Signal photons:

- Electron-hole pair creation in high-field region causing avalanche
- E-h creation by photon strongly wavelength, maximum efficiency@ about 400 nm, decreasing in the UV, VUV

Dark Count Rate:

- Thermal generated e-h pair
- Quantum tunneling generated e-h pair

Internal Correlated avalanches:

- After pulsing: carrier trap (in crystal impurities) during primary avalanche and release
- Direct cross-talk: photon from primary avalanche reach neighbouring cells

External cross-talk:

• The avalanche in one SiPM generate infrared photons that travels and hit another SiPM

Fig. 1. Schematic representation of the internal structure of FBK Silicon photomultiplier, made in RGB-HD or RGB-UHD technology, with deep trenches between cells (SPADs).

SiPM at cryogenic temperatures

- SiPM have been very actrattive for dark matter and neutrino experiment operating with liquid nobles
 - Lower radioactivity budget
 - Extremely low DCR @ low T
 - Excellent photon counting
- First pioneristic employment in cryogenic environment dates back to 2011
- Operating at low temperature introduce several changes in SiPM characteristics wrt standard room temperature:
 - Quenching Resistance
 - Signal shape
 - Breakdown Voltage
 - Dark Count Rate
 - Crosstalk and afterpulses
 - PDE

Some pioneristic studies

NUCLEAR A METHODS

> PHYSICS RESEARCH

> > inst

Nuclear Instruments and Methods in Physics Research A 628 (2011) 389-392

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

2013 PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: July 22, 2013 ACCEPTED: August 26, 2013 PUBLISHED: October 14, 2013

LIGHT DETECTION IN NOBLE ELEMENTS (LIDINE 2013) 29th – 31st May 2013, FERMI NATIONAL ACCELERATOR LABORATORY ILLINOIS, U.S.A.

Studies of silicon photomultipliers at cryogenic temperatures

G. Collazuol^{a,*}, M.G. Bisogni^{a,b}, S. Marcatili^{a,b}, C. Piemonte^c, A. Del Guerra^{a,b}

^a INFN Sezione di Pisa, 56127 Pisa, Italy

^b Dipartimento di Fisica, Università di Pisa, 56127 Pisa, Italy ^c Fondazione Bruno Kessler - IRST, Divisione Microsistemi, 38050 Trento, Italy

2015 inst

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: May 26, 2015 ACCEPTED: July 27, 2015 PUBLISHED: August 25, 2015

Performance of a SensL-30035-16P silicon photomultiplier array at liquid argon temperature

S. Catalanotti,^a A.G. Cocco,^a G. Covone,^a M. D'Incecco,^c G. Fiorillo,^a G. Korga,^d B. Rossi^{*a,b,1*} and S. Walker^{*a*}

Liquid argon scintillation read-out with silicon devices

N. Canci,^{*a*,1,2} C. Cattadori,^{*b*} M. D'Incecco,^{*c*} B. Lehnert,^{*d*} A.A. Machado,^{*c*} S. Riboldi,^{*e*} D. Sablone,^c E. Segreto^c and C. Vignoli^c

Quenching resistance and signal shape

- The R_{0} increase with decreasing temperature (from 0.1M Ω to 1 M Ω going from room to LN temperature)
- Higher $R_{\rm O}$ and lower is the amplitude of the single photoelectron
- In addition, together with the junction capacitance, it affects the signal recovery (long tail)
- In addition, the Joule heating could reduce $R_{\rm Q}$ during fall time and this could inhibit the quenching process

Breakdown voltage

- The breakdown voltage decrease with decreasing temperature
- This is due to larger carrier mobility-> larger impact ionization
- Decreasing of the V_{BD} is linear for a wide range of temperature

Dark Count Rate

- Spontaneous avalanches can occour due to thermal generated charged carrier or due to quantum tunneling
- Dark events results in output that is indistinguishable from that obtained from absorption of a photon
- Going down in temperature (below 120K), tunneling contribution become more important than thermal generation
- Strong R&D effort performed by FBK within DarkSide-20k experiment to reduce the overall DCR up to mHz/mm²

Secondary pulses: afterpulses and cross-talk

- The afterpulse probability is quite stable with temperature up to 110 K
- Down 110K start rising significantly, probably due to new traps become active related to carrier freez-out
- This behaviour of AP is not confirmed for all SiPMs models
- The probability of cross-talk do not have a significative variation at cryogenic temperatures

External crosstalk

- eCT could be critical in detectors with large coverage and looking for rare events
- Measured at TRIUMF with emission microscopy images and spectral analysis
- no significative variation with temperature of this effect is observed

Photon Detection Efficiency and VUV sensitivity

No sensitive to VUV

• Need for WLS as for example TPB or PEN to convert VUV light in visible

VUV sensitive

- high field region very close to the surface
- Developed by FBK and Hamamatsu

10

195

200

over voltage [V]

12

DarkSide-20k FBK@OV=7V

Experiments using cryogenic SiPMs. (past, currently running and future detectors)

- GERDA Phase II
- LEGEND-200
- MEG II
- ProtoDUNE –DUNE Photon Detection System validation
- DarkSide-20k
- DUNE FD1 and FD2
- nEXO
- LEGEND-1000

GERDA Phase II

LAr veto system in GERDA Phase II

• 405 fibers readout at both end by 90 SiPMs

6 SiPM (3x3 mm2) connected in parallel

• no amplification in LAr

LEGEND-200

Light readout instrumentation deployed into the scintillating liquid argon (LAr) volume surrounding the Ge detectors

- Fibers (Saint Gobain BCF 91A) arranged in 2 barrels
- Outer barrel surrounded by a wavelength-shifting reflector TPB-coated Copper-Tetratex foil
- 20 / 9 modules for outer / inner barrel
- Read out at both ends by SiPM arrays

- Ketek PM33100 3x3 mm² SiPMs used
- 9 SiPMs mounted on one module and read out in parallel
- Suprasil-1 substrate with aluminum traces
- 58 SiPM arrays:
 - 18 arrays mounted on the inner barrel
 - 40 arrays mounted on the outer barrel

LEGEND-1000

LEGEND-1000: Light readout for Inner and Outer Liquid Argon Instrumentation (UAr in Inner – AtLAr in Outer) More details in the **R. Brugnera** Presentation «Neutrinoless double-beta decay search with the LEGEND experiment»

- 42 strings of Ge detectors
- Legend-200-like Inner veto read-out

Parameters	Specifications
Operation environment	Air
Output amplitude for 1 PE	$pprox 800 \ \mu V$
Low-energy noise (baseline RMS)	$\leq 100 \ \mu V$
Bandwidth (3 dB)	$> 120 \mathrm{~MHz}$
Fall time	$>50 \ \mu s$
Amplification gain	≤ 50 per polarity
Gain stability	< 1%
Output driver	100 Ω Differential
Driver load	10 m cable differential @ 100 pF/m
Adjustable bias voltage interval	15 - 31.5 V, in steps of 0.05 V

Refence Design for Outer Veto:

- 100×10×2 cm³ light guides made of PMMA and wrapped with a thin foil of PEN or TPB acting as a wavelength shifter for the VUV 128 nm Ar light (or 175 nm of Xe-doped LAr)
- Readout performed at one (or both) end(s) of the guide with 12,6×mm² SiPMs

- 12 horizontal light guides on each side of the moderator panel: 288 SiPMs/panel
- Each side of the top and bottom lids equipped with 24 and 45 light guides
- Cryostat surfaces facing LAr, as well as the external reentrant tube wall, lined with a wavelength-shifting reflective foil to assure a high light collection efficiency
- Total number of SiPMs 5112
- 852 (426) readout channels assuming groupings of 17 Reference design 6 (12) SiPMs

MEG II

LXe scintillation light detection by VUV-MPPC

- Highly granular scintillation readout with 4092 VUV-MPPCs (139 mm² each)
- Covering 0.92 m² area (62% coverage)

S10943-4372

MEG II SiPM readout

Requirements and constraints

- High granularity
- Need good S/N and high speed
- No amplfication at cryo temperatures

Passive ganging of 4 sensor segments (6x6 mm² each)

- Series connection for signal
- Parallel connection for biasing

VUV-MPPCs assembled on PCB slabs

- 22 sensors on each PCB
- Precise sensor alignment

DarkSide-20k: SIPM coverage, design and requirement

Optical plane with 1056 channels

(16 tiles) $20 \times 20 \text{ cm}^2$ with 4

readout channels

- Two phase LArTPC (20t)
- Top and bottom of the TPC vessel covered by Photon Detection Units based on cryogenic SiPMs covering 21 m² (2112 channels)
- TPC surrounded by VETO Photon Detection Units covering 5 m² (480 channels)

Requirements for Photon detection Units:

- DCR<0.1 Hz/mm² @87K
- PDE > 45%
- SNR>8
- Timing resolution (10 ns)
- Dynamic range >50 PE
- Power consumtion<250mW
- Radiopurtity<mBq

20

The Photon Detection Unit (PDU)

PDU: 20 x 20 cm²

PDM: 5 x 5 cm²

PDU: 16 PDMs size $20x20 \text{ cm}^2$. with an overall weight of ~ 0.4 kg. No single PDM readout. Four PDMs (1 Quadrant) are summed in one channel (100 cm²). **PDU has 4 output channels**

Cryogenic front end electronics: Series/Parallel ganging **4s 6p** PDM+front-end integrated in a unique PCB

DarkSide-20k SiPM performances

Single SiPM Performaces

DUNE Photon Detection System

- The Photon Detection System readout of the first 2 LArTPC of 17 kton will be based on SiPM implemented in the X-Arapuca detector
- Scintillation photons after pTP wavelenght shifting are trapped in a high reflective box with dichroic window
- Inside PMMA light-guide drive photons to be detected by SiPMs at light-guide edges

More details in the **G. Botogoske p**resentation «DUNE Photon Detection System»

DUNE Photon Detection System (FD1-HD)

- The unit cell, Supercell (SC), have a rectanguar shape is readout by 48 SiPM (**6x6 mm**²)
- 6 SiPM on each mounting board, 8 mounting board for SC,
- 1 readout channel (48 SiPM) for SC
- Passive ganging of 6 SIPM on mounting board
- Active ganging: 8 mounting board (cold amplifier->differential signal)
- A PDS module is made by 4 SuperCell
- 1500 modules for **288000 SiPMs**
- Final version currently running in ProtoDUNE@CERN providing good results

More details in the **M. Guarise pr**esentation «Mass test setup for the DUNE FD1 SiPMs characterization and first results»

S3

DUNE Photon Detection System (FD2-VD)

- The unit cell in FD2-VD, Megacell, has a square shape (65 cm x 65 cm) with a big light guide inside and 16 dichroic filters
- They are 352 single side (mounted on lateral cryostat membrane) and 320 double side (mounted on the central cathode)
- The Megacell is readout by 160 SiPM (40 for each side)
- On overall 107502 SiPMs
- 2 readout channel for 1 Megacell (80 SiPM per channel)
- 20 SiPMs passively ganged (mounted on flexible boards)
- 4 flex PCB actived ganged
- Cold transimpedance amplifier

Performances of PDS-VD in **S. Corchado p**resentation «X-ARAPUCA PDE for DUNE FD-VD»

nEXO

- VUV sensitive SiPMs operating @165K
- Large array covering 4.5 m²
- Good results achieved in measured PDE for both Hamamatsu and FBK candidates

Prototype large area SiPM array (24SiPMs, 24cm²)

Future prospectives: back illuminated

Back illuminated SiPMs

- This new design minimize dead area
- The entrance window have ant-reflected coatings and textured surface
- Light enters through the unstructured backside and photons convert in the fully depleted n-type silicon bulk. Field shaping drift rings create an electric field in which the electrons drift into a small high field region where the avalanche multiplication occurs. This high field region is built up between the n+ contact and the deep p implant.

Future prospectives: digital SiPMs

Digital SiPMs

- Each pixel connected to its own readout electronics => time-stamp
- First commercial dSiPM introduced by Philips around 2010 → one time-stamp per scintillation event (PET application and Cerenkov light detection)
- Latest developments \rightarrow 3D assembly \rightarrow 1) pixels 2) quenching circuits 3) signal processing and readout

Conclusions

- The use of cryogenic SiPM achieved significative advancements
- In approximately 10 years from test of first prototypes of few mm² the Liquid Nobles community has progressed to constructing experiments with ten of m² SiPM coverage
- Characteristics of SiPMs in cryogenic environment have been extensively investigated
- Back-side illuminated and DSiPMs represent the next challenge for future experiments

