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THE LUX-ZEPLIN EXPERIMENT

S DEY 2024

4850 ft below surface

■ Dual Phase Xe
■ Quadruple 

Nested Detector

■ Sanford 
Underground 
Research Lab, SD, 
US
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■ 60x lower 

background than LUX 
■ 100x more sensitive

2■ More details in Amy’s great talk on WS 2024 Results! 2



DUAL PHASE TPCS & FIELDS
For  Single Scatters 

■ 3D Event Reconstruction

■ PMT Hit Pattern → xy
■ Drift Time → z 

■ S2:S1 → Electronic Recoil (ER) vs 
Nuclear Recoil (NR) 

■ Recombination is field dependent!
■ Strong E field → more charge 

freed, less light

■ ER-NR band positions in S1-S2 space 
changes
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LZ TPC GEOMETRY & MATERIALS

S DEY 2024

Anode Mesh

Gate Mesh

PTFE

PEEK Spacer

PMT Array

Extraction

𝜿LXe= 1.875
𝜿GXe= 1
𝜿PTFE= 2.1
𝜿PEEK= 3.2

Dual Phase
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Polytetrafluoroethylene 
(Teflon)

Polyether ether ketone

Field Rings

GATE
Pitch: 5 mm
Diameter: 75 µm

ANODE
Pitch: 2.5 mm
Diameter: 100 µm

CATHODE
Pitch: 5 mm
Diameter: 100 µm

BOTTOM
Pitch: 5 mm
Diameter: 75 µm

Dielectric Constants 𝜿
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FINITE ELEMENT METHOD: FENICS

S DEY 2024

E Field
■ Poisson’s Equation is solved in 

FeniCS 

■ 2D axisymmetric model is used

■ Mesh generated in GMSH

○ Manual setting of mesh
○ More points sampled in regions 

where non-uniform fields 
expected 

Interpolate fields 
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LUX-ZEPLIN
PRELIMINARY

FeniCS| fenicsproject.org 
GMSH| gmsh.info



LZEF

S DEY 2024

Initial Meshing in 
GMSH

FeniCS

Field Map 

1
2

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY
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LZEF

S DEY 2024

Region of greater 
irregularity

Towards more parallel 
field lines

Initial Meshing in 
GMSH

FeniCS

Delaunay Triangulation in 
QHULL: Re-Meshing

■ Points are sampled from along field 
lines/ drift trajectories 

■ If field is very different to the mean 
field then tighter meshing

Field Map 

1
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LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

QHULL| qhull.org
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LZEF

S DEY 2024

Region of greater 
irregularity

Towards more parallel 
field lines

FeniCS

Delaunay Triangulation in 
QHULL: Re-Meshing

■ Points are sampled from along field 
lines/ drift trajectories 

■ If field is very different to the mean 
field then tighter meshing

Drift Map (S2 R)

Electron bombs from 
each point in modified 
mesh → bidirectional 

mapping until a 
boundary is reached 

produces drift 
trajectories 

Field Map 
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Initial Meshing in 

GMSH
1

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY
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ELECTRIC FIELDS| VALIDATION 1

S DEY 2024

Max dt vs 
field

■ A model for drift velocity as a 
function of field is needed to 
ensure faith in position 
reconstruction

■ Quick check: Does the maximum 
drift time observed match 
simulations LUX-ZEPLIN

PRELIMINARY
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ELECTRON DRIFT VELOCITY

S DEY 2024
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■ Non-trivial relationship between p,T and drift 
velocity in LXe 

■ New parameterisation was used in LZEF to 
improve data-sims max drift time match

■ This is consistent with Cohen-Lekner’s theory of 
two free mean paths

○ Energy transfer 𝚲0 
(structure-independent) 

○ Momentum transfer  𝚲1 
(structure-dependent therefore 
field-dependent) 

Select cathode and gate alpha populations: 
■ Point-like interactions
■ Gate: S2 pulses minimally affected due to diffusion  

NEST fit dev. (sims-data diff.) 2.6%

New Parameterisation dev. 0.78%

New Parameterisation

Vdrift = z/𝚫t

W
S 2022

W
S 2024

LUX-ZEPLIN
PRELIMINARY
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ELECTRIC FIELDS| VALIDATION 2

S DEY 2024

Max dt vs 
field

■ S-shape of wall in S2-reconstructed space 
due to field inhomogeneities, ICV shape & 
diffusion 

■ Field map informs the translation between 
S2 r & physical r via the drift map 

Wall 
Position 
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Real Space Boundary 

E Field
CATHODE

GATE

S2
 W

al
l

LUX-ZEPLIN
PRELIMINARY



PTFE CHARGE ACCUMULATION

S DEY 2024

No Wall Charge Wall Charge Distribution

■ Hypothesis: Electrons attracted to PTFE, wall ‘charging’?

■ Apply charge density on rings in drift time slices on the PTFE walls
■ Minimise residual of sims vs data wall boundary calculation 

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

LZ WS 2024 Ave

XENONnT Ave

LUX Ave

12z (cm)



S DEY 2024

■ Left Effect of variation in position reconstruction for varying E field configurations

■ Field map middle shows variation of field with r (negligible < 1%) & z (~18%)

■ Attachment Probability right: The probability that an electron generated at a certain point in r,z 
gets “lost” to the wall (i.e. doesn’t make it up to the ER) 

CIV ~ 0.3 %

Charge 
insensitive 
volume

PTFE CHARGE ACCUMULATION

Max. Reconstruction Difference in Azimuth

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY
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S DEY 2024

PTFE CHARGE DYNAMICS

WS 2024
Start

WS 2024 Average

WS 2022

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

■ PTFE charge build up evident 
from charge density profiles 
required for “wall match” 

■ From WS 2022 → WS 2024 the 
required charge increases

■ Within WS 2024, there is a 
period of time where the wall 
appears to “discharge” 
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■ Average charge density in fact 
continues to increase 

■ Very localised high-density 
region of charge required to 
produce the observed wall 
position

LUX-ZEPLIN
PRELIMINARY
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ELECTRIC FIELDS| VALIDATION 3

S DEY 2024

Max dt vs 
field

Wall 
Position 

Field 
Variation

■ Dispersed calibration sources 
can be used to directly extract 
field maps too - a more 
apples-to-apples comparison, 
albeit with caveats

15
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FIELDS FROM Kr83m
83mKr-Derived Field Variation
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Cross-check simulations to data

S DEY 2024

With a weaker field → more recombination
■ S1 is enhanced 
■ So S2 is suppressed 

■ 83mKr: S1b/S1a should increase with field
○ Ratio means S1 systematics “cancels”

■ Field dep. kicks in for ERs > 10 keV 
○ (low recombination)

S1a S1b

Recombination 

fluctuations Dete
cto

r 

Res
olu

tio
n

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY
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FIELDS FROM Xe131m 

S DEY 2024
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Rn 222 
S1 Correction Map

Xe 131m Selection

Photon Yield - Field 
Relationship

■ Rn 222 alphas used to derive 
light collection efficiency as a 
function of xyz

■ LCE-corrected S1 for Xe 131m 
reveals field dependence (ERs) 

Kr 83m Xe 131m Sim 𝛟-Ave.

97.0 ± 0.8 97.8 ± 0.4* 97.3 ± 2.2

FV-Averaged E Field (V/cm)

Non-Trivial!

*Using NEST 𝛄 model

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

LUX-ZEPLIN
PRELIMINARY

CATHODE

http://teacher.pas.rochester.edu:8080/pub/Lz/LZAnalysisMeetings/Kr83mFieldMapping_Bramwell.pdf
https://docs.google.com/presentation/d/1lT5Yg-fzht5X2iG1eDIGlmOWCWDWEwF2n0OVE8Dpr3w/edit#slide=id.g2b6b6ca27c3_0_0


CONCLUSIONS

■ By considering PTFE’s 
triboelectric properties, a 
close match has been 
achieved between the 
simulated and 
data-observed wall shapes

■ Improved understanding of 
position reconstruction due 
to this!

■ Updated drift velocity-field 
relationship also improves 
match to within 1%

■ Kr83m and Xe131m injected 
calibration source 
recombination data derive field 
maps in agreement with each 
other

■ Xe131m used for the first time 
to derive field maps
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