Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

Sam Fogarty on behalf of the DUNE collaboration LIDINE August 26th, 2024

The Deep Underground Neutrino Experiment (DUNE)

DUNE Far Detector Technical Design Report, Volume II: <u>arxiv:2002.03005</u>

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes August 26, 2024 2

COLORADO STATE

UNIVERSITY

DUNE

DUNE Physics and Goals

- Primary physics program
 - Precise measurement of neutrino oscillation parameters, e.g. CP violating phase δ_{CP}
 - Determination of neutrino mass ordering
- Extensive secondary physics program
 - Neutrino detection from core-collapse supernovae
 - Proton decay discovery potential
 - And more (e.g. solar neutrinos, BSM searches, atmospheric neutrinos, ...)

CP Violation Sensitivity

DUNE Far Detector Technical Design Report, Volume II: arxiv:2002.03005

Near Detector Complex

SAND (System for on-Axis Neutrino Monitoring) Magnetized beam monitor Measures beam flux

going to the FD

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes August 26, 2024

DUNE ND CDR: <u>arXiv:2103.13910</u>

Liquid Argon Time-Projection Chambers (LArTPCs)

Detector filled with purified LAr

Argon ions drift in the opposite direction, but they are not very relevant for ND-LAr

- Charged particles leave a path of ionization electrons
 - Electrons drift in the E-field to the anode to make signals on the charge readout pixels
- Charged particles also create scintillation light in LAr
 - Detected by photon detectors
 - Used to reconstruct interaction time and position

DUNE

ND-LAr Overview

- 35 1x1x3 m³ LArTPC modules in a 5x7 array
- Compact light readout with 25% coverage of active LAr
- TPC module optical isolation: interaction-level timing info
- 3D readout using pixelated charge readout to handle high neutrino pileup \rightarrow ~60 ν interactions per 1.2 MW beam spill

COLORADO STATE UNIVERSITY

DUNE

The ArgonCube 2x2 Demonstrator

Four 1.2 x 0.6 x 0.6 m³ LArTPC modules in a 2x2 array (smaller than the ND-LAr modules)

Prototype of ND-LAr operated at Fermilab underground in MINOS hall using the NuMI beam line

August 26, 2024

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

Repurposed **MINERvA** planes for muon reconstruction and tracking

The ArgonCube 2x2 Demonstrator

Module-0 Cosmic Ray Event (on-surface @ Univ. of Bern)

Module-0 Performance Paper: <u>arXiv:2403.03212</u>

The individual 2x2 modules were first tested at the Univ. of Bern with cosmic rays

Prototype of ND-LAr operated at Fermilab underground in MINOS hall using the NuMI beam line

2x2 Candidate Neutrino Interaction

First run in a neutrino beam in early 2024 — demonstrated successful operation at nominal configuration

2x2 Photon Detectors

Two complementary photon detector technologies utilized for the 2x2 and ND-LAr

COLORADO STATE

UNIVERSITY

Low Energy Radioactivity in LAr

- Radioactive decays present in LAr
 - e.g. 39Ar, 85Kr
 - 39Ar rate is 1 Bq/kg: ~8.5M per hour in the 2x2

Spectral contribution from 39Ar and 85Kr beta decays in the WARP LArTPC

Low Energy Radioactivity in LAr

- Radioactive decays present in LAr
 - e.g. 39Ar, 85Kr
 - 39Ar rate is 1 Bq/kg: ~8.5M per hour in the 2x2

- materials
 - Beta, alpha, and gamma sources
 - e.g. 40K, 60Co, 232Th and 238U decay chains

Spectral contribution from 39Ar and 85Kr beta decays in the WARP LArTPC

COLORADO STATE

UNIVERSITY

Other radioactive decays potentially from detector

11 August 26, 2024 Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

COLORADO STATE UNIVERSITY

- and light
 - Reconstructing using light brings extra challenge
 - Low scintillation light produced in the decay interactions in LAr
 - Detection efficiency highly dependent on light readout thresholds

Reconstruct the radiological background in the 2x2 LArTPC using charge

- Reconstruct the radiological backge and light
 - Reconstructing using light brings extra challenge
 - Low scintillation light produced in the decay interactions in LAr
 - Detection efficiency highly dependent on light readout thresholds
- Use the reconstruction and analysis to calibrate the 2x2, demonstrating the potential for calibrating ND-LAr the same way

• Reconstruct the radiological background in the 2x2 LArTPC using charge

COLORADO STATE UNIVERSITY

- Reconstruct the radiological backge and light
 - Reconstructing using light brings extra challenge
 - Low scintillation light produced in the decay interactions in LAr
 - Detection efficiency highly dependent on light readout thresholds
- Use the reconstruction and analysis to calibrate the 2x2, demonstrating the potential for calibrating ND-LAr the same way
- Demonstrate how effective the ND-LAr technology is at detecting low energy activity with charge and light → relevant for higher energy activity, such as supernova neutrinos

• Reconstruct the radiological background in the 2x2 LArTPC using charge

COLORADO STATE UNIVERSITY

- Can be used to calibrate the detector:
 - When the neutrino beam is **off**
 - In environments with low cosmic ray rates (i.e. ND-LAr and the DUNE Far Detector)

- Can be used to calibrate the detector:
 - When the neutrino beam is off
 - In environments with low cosmic ray rates (i.e. ND-LAr and the DUNE Far Detector)
- Monitor E-field uniformity
 - Look for deflections of the low energy activity in 3D to find E-field distortions
 - More straightforward than other methods given low energy activity is point-like

- Can be used to calibrate the detector:
 - When the neutrino beam is off
 - In environments with low cosmic ray rates (i.e. ND-LAr and the DUNE Far Detector)
- Monitor E-field uniformity
 - Look for deflections of the low energy activity in 3D to find E-field distortions
 - More straightforward than other methods given low energy activity is point-like
- Light yield measurement as a function of position in the detector
 - More straightforward to use point-like topologies, instead of line-like topologies (e.g. from cosmic rays, rock muons)

- Can be used to calibrate the detector:
 - When the neutrino beam is off
 - In environments with low cosmic ray rates (i.e. ND-LAr and the DUNE Far Detector)
- Monitor E-field uniformity
 - Look for deflections of the low energy activity in 3D to find E-field distortions
 - More straightforward than other methods given low energy activity is point-like
- Light yield measurement as a function of position in the detector
 - More straightforward to use point-like topologies, instead of line-like topologies (e.g. from cosmic rays, rock muons)
- Electron lifetime measurement
 - Alternative to using cosmic rays, which are not common underground, or rock muons, which are not always available (unlike low energy decays)

COLORADO STATE UNIVERSITY

LArPix pixelated anode

Carbon-loaded Kapton field cage sheet

August 26, 2024 13

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

LArPix pixelated anode

Carbon-loaded Kapton field cage sheet

ArCLight tile

August 26, 2024 13

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

LArPix pixelated anode

Carbon-loaded Kapton field cage sheet

Cathode

LCM tile

ArCLight tile

Light detectors digitized when a waveform from 1 ArCLight or 3 LCMs surpasses a self-trigger threshold (Or digitized when a beam signal is received)

August 26, 2024 13

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

Reconstruction Summary

The reconstruction process is relatively straightforward:

Step 1: Cluster charge packets in time and space (DBSCAN)

Step 2: Group charge clusters around light readout triggers in time using a time window of -150 μs to ~189 μs^* + 150 μs

Step 4: Apply cuts to improve selection purity

* total drift time in the 2x2

- Step 3: Using the time difference between matched charge and light, calculate drift coordinate and interaction time for charge clusters (assuming a constant drift velocity)

Note on plot: Module-0 from Univ. of Bern test at the surface

Note on plot: Module-0 from Univ. of Bern test at the surface

Note on plot: Module-0 from Univ. of Bern test at the surface

TPC2

5000 cathode anode 4000 3000 Counts 2000 The extended window allows us to estimate purity using 1000 -0 -20 -10 20 30 10 40 0 Drift Coordinate X [cm]

DUNE

Note on plot: Module-0 from Univ. of Bern test at the surface

TPC2

5000 cathode anode 4000 3000 Counts 2000 The extended window allows us to estimate purity using 1000 -Active LAr -1050 -20 20 30 40 10 0 Drift Coordinate X [cm]

SI COP

COLORADO STATE UNIVERSITY

DUNE

Sample Purity Estimation

- Integrate portion of sideband and scale it to the size of active LAr region, i.e.:
 - $B = (integral of sideband) \times \frac{size of active LAr volume}{size of sideband selection}$

Estimated number of incorrect charge-light matches in active LAr region

- Integrate inside active LAr and subtract B, i.e.:
 - S = (integral of active LAr region) B

Estimated number of correct charge-light matches in active LAr region

COLORADO STATE UNIVERSITY

Sample Purity Estimation

• Then purity is calculated simply as:

$$Purity = \frac{S}{S+B}$$

- Now we have a data-driven handle on how often we correctly match charge to light
- This can inform us about how effective data cuts are at improving the sample purity

Optical Proximity Requirement

- To improve selection purity, I use the following technique:
 - In a given light trigger, look for waveforms above a threshold (defined as optical "hits")
 - Find the physical detectors these waveforms correspond to, then require matched clusters to be in close proximity to it
 - **Motivation**: We are most likely to see the light from a decay if it interacts close to a light detector \bullet

August 26, 2024 19

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

COLORADO STATE

UNIVERSITY

Reconstruction Results

Note on plot: Module-2 from Univ. of Bern test at the surface

COLORADO STATE

UNIVERSITY

Reconstruction Results

August 26, 2024 21

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

COLORADO STATE UNIVERSITY

Reconstruction Results

August 26, 2024 22

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

Note on plot: **Module-2** from Univ. of Bern test at the surface

The "top-down" view of the module

- We can see features in the distribution consistent with E-field distortion
 - Could be caused by a nonzero transverse E-field component
- This shows we can use this reconstruction technique to monitor E-field uniformity in the 2x2

UNIVERSITY

Reconstruction Results - 2x2

- On the right: an example of the distribution of reconstructed low energy candidates in Module-2 of the 2x2
 - Corresponds to 1 hour of data taking
- We were able to achieve the lowest thresholds so far in a special 2x2 run to support low energy reconstruction
 - Appears we are able to reconstruct low energy activity in much of the module's active volume

Note: Only ~3% channels disabled in 2x2

40

20

-20 -

-40

Υ [cm]

Note on plot: Module-2 from 2x2 test

COLORADO STATE

UNIVERSITY

DUNE

Reconstruction Results - 2x2

- While the optical proximity cut for \bullet 2x2 is still in progress, we can see another way to increase selection purity
 - Requiring higher charge values yields higher purity
 - Rate is lower, but still pretty high despite the cut
- However, the proximity cut should yield even better selection purity with improved rate

cluster q > 0 ke

	ΜΟ	M1	M2	N
Purity Fraction	0.87	0.84	0.90	0.8
andidate Rate [Hz]	129	101	185	22

Compared to ~600 Hz/module expected from 39Ar alone

cluster q > 20 ke

	ΜΟ	M1	M2	N
Purity Fraction	0.95	0.93	0.92	0.
andidate Rate [Hz]	62	42	123	1(

Note: Candidate rate = total rate in module * purity fraction

COLORADO STATE

UNIVERSITY

Reconstruction Results - 2x2

August 26, 2024 25

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

40

35

30

25

- 20

- 15

- 10

- 5

Note on plot: **Module-2** from 2x2 test

The "top-down" view of the module

- We also observe evidence of E-field distortion in the 2x2 modules
 - Behavior varies between modules, not completely consistent with previous LAr tests
 - Generally the effects are small

Reconstructed Energy Spectrum

August 26, 2024 26

Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

COLORADO STATE UNIVERSITY

DUNE

Conclusions

August 26, 2024 Sam Fogarty I Charge-Light Matching of Ambient Low-Energy Activity in the DUNE Near Detector Prototypes

COLORADO STATE UNIVERSITY

Conclusions

- The results show that we can:
 - Reconstruct the radiological background in a large fraction of the 2x2 active volume with sufficiently low light readout thresholds
 - Achieve high selection purity by applying data cuts
 - Assess E-field uniformity near the detector edges

Conclusions

- The results show that we can:
 - Reconstruct the radiological background in a large fraction of the 2x2 active volume with sufficiently low light readout thresholds
 - Achieve high selection purity by applying data cuts
 - Assess E-field uniformity near the detector edges
- Next steps and plans
 - Electron lifetime measurement study, validate using results from other measurements (i.e. using rock muons, cosmic ray muons) or simulations
 - Extend E-field distortion study by measuring transverse E-field magnitude
 - Explore other applications (e.g. light yield measurement)

