



# **Calibration and Timing Performance** of the Light Detection System in the **ICARUS Detector**

### Matteo Vicenzi (<u>mvicenzi@bnl.gov</u>) on behalf of the ICARUS collaboration

## LIDINE 2024 - São Paulo (Brazil) August 28th, 2024





## **ICARUS** @ Fermilab

**ICARUS** is the Far Detector of the **Short Baseline Neutrino (SBN) program**, sitting 600 m on-axis on the Booster Neutrino Beam (**BNB**) and 6° off-axis from the Neutrinos at the Main Injector (NuMI) beam.

ICARUS recently concluded its third physics run in July 2024.







2

## **ICARUS LArTPCs**

### ICARUS is the largest liquid argon detector currently in operation (~476 active tons). It's divided into 2 modules, each hosting 2 TPCs that share a central cathode plane.









## Neutrino beam timing



Neutrino propagation (+ meson decays) only adds a constant offset, so neutrinos inherit the time profile of the proton bunches. Precise event timing allows to tag neutrinos directly with no use of charge!



Achieving this goal requires a relative and absolute calibration strategy towards **O(ns)** resolution!





Beam timing:

- BNB: 1.6 µs spill, 81 bunches, 18.9 ns spacing (52.8 MHz)
- NuMI: 9.6 µs spill, 486 bunches, 18.8 ns spacing (53.1 MHz)

**BNB** bunches crossing ICARUS

~18 m





- Overview of the Light Readout System
- Laser Calibrations
- Cosmics Calibrations
- Beam Event Timing
- Summary





# **ICARUS** light detection system

360 Hamamatsu R5912-MOD 8" PMTs mounted behind the anode wires.

**TPB coating** for 128nm sensitivity.

Placed in a "honeycomb" structure on the four TPC "walls" (90 per TPC wall, 180 per module).

24 CAEN V1730B digitizers (500 MSa/s), 15 PMTs + 1 spare channel per board.













# **Timing Calibration Strategy**

PMTs in the same module.

at different stages of the optical data flow:

- 1. Hardware Synchronization: removes jitters between the CAEN V1730 readout boards and the trigger hardware.
- 2. Laser Calibrations: cancels differences in the PMT transit and readout times (e.g: voltage applied, fiber delays).
- 3. Cosmics Calibration: further equalization of the PMT times using downwardgoing cosmic muons.



- **<u>GOAL</u>**: Instantaneous signals should be reconstructed as simultaneous by all the
- ICARUS currently uses three levels of timing corrections/inter-calibrations deployed



- Overview of the Light Readout System
- Laser Calibrations
- Cosmics Calibrations
- Beam Event Timing
- Summary





## **Overview of the laser system**







M. Vicenzi - LIDINE 2024

https://doi.org/10.1016/j.nima.2024.169670







# Signal propagation delays

Measuring signal delays between light hitting the photocathode ( $t_{ph}$ ) and its signal being digitized ( $t_{dig}$ ) using **instantaneous laser pulses** ( $\lambda = 405$  nm, FWHM 60 ps) sent to each PMT.







signal and reference

M. Vicenzi - LIDINE 2024



## Laser calibrations

Delays are **O(200ns)**: 38 m of the signal cables. **Voltage differences** 

produce ~10 ns spread (electron transit time).

These delays are stored in a database and subtracted to correct the digitized pulse times:

$$t^{c}_{dig} = t_{dig} - \Delta t_{signal}$$





PMT signal delays as a function of applied HV

M. Vicenzi - LIDINE 2024

- Overview of the Light Readout System
- Laser Calibrations
- Cosmics Calibrations
- Beam Event Timing
- Summary





## **Calibration with cosmic tracks**

Laser light is point-like and shines on a specific spot on the photocathode according to the PMT. Also, 5-7% of PMTs do not see direct laser light.

## **IDEA:** Use **downward-going muon tracks** that shine uniformly on the PMTs, spatially

<u>Selection example:</u>

- Cathode crossing tracks
- Verticality with cuts on start/end positions
- Matched with a scintillation "flash" (charge vs light barycenter)





constrained by TPC (or CRT) reconstruction. Happening all the time: no need of special runs!

M. Vicenzi - LIDINE 2024



# **Timing with cosmics**

Comparing with the track, a **linear relationship** is expected between PMT y-coordinate and time.

Deviations are due to z-position w.r.t the track or x-coordinate if track is closer to one wall.











## **Post-calibration time residuals**

The mean of the distribution of time **residuals** for each PMT is used to correct its digitized pulse times.

After corrections, an independent samples shows an inter-calibration well below <1 ns!







- Overview of the Light Readout System
- Laser Calibrations
- Cosmics Calibrations
- Beam Event Timing
- Summary





## **Event timing** Light-only reconstruction

The dependency on the (x,y) position is removed by taking the mean between the **first PMT times on opposite walls** of the module.

Entry plane

A **time-of-flight** (ToF) correction is applied using the barycenter of the flash of light.

No charge information is currently used.



M. Vicenzi - LIDINE 2024



## **BNB bunch structure Light-only reconstruction**





M. Vicenzi - LIDINE 2024



### (After subtracting cosmics)



## **BNB bunch timing** Light-only reconstruction

After fitting the bunch structure, the **spacing** between Superimposing all the bunches the **average** the bunches is  $18.935 \pm 0.001$  ns (52.8 MHz). **bunch width** is  $\sigma = 2.99 \pm 0.04$  ns.\*



M. Vicenzi - LIDINE 2024

Similar results for NuMI!



correction using only light barycenter



- Overview of the Light Readout System
- Laser Calibrations
- Cosmics Calibrations
- Beam Event Timing
- Summary





## Summary

ICARUS has developed multi-stage strategies for both relative and absolute timing calibrations of its light readout system.

Laser and cosmic calibrations inter-calibrate the PMTs, refining timing to subnanosecond synchronization across the system.

Interaction times are realigned with the beam, allowing the **bunch structure** to be directly observed with only optical data.

This precise timing framework will be vital for effective background rejection and enhancing the event selection for neutrinos and BSM searches with NuMI beam.





# Thank you!

This document was prepared by ICARUS using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359



M. Vicenzi - LIDINE 2024

## **ICARUS timeline**





Sep 2020

Detector activation, Begin of commissioning activities.



ICARUS modules shipped from CERN to Fermilab



M. Vicenzi - LIDINE 2024





### May 2022

Overburden installation completed. Begin of Physics runs.

### **Dec 2021**

Installation of the Cosmic Ray Tagger (CRT) system. End of commissioning activities.



## **ICARUS** physics goals



- $\nu_{\mu}$  disappearance with BNB +  $\nu_{e}$  disappearance with NuMI (Neutrino-4 claim).
- $\nu_{\mu,e} Ar$  cross-section measurements with NuMI.
- Sub-GeV BSM searches with NuMI.



M. Vicenzi - LIDINE 2024

The ultimate goal for ICARUS is to provide oscillated neutrino spectrum as Far Detector of the Short Baseline Neutrino (SBN) Program and measure  $\nu_{\mu}$  disappearance +  $\nu_e$  appearance with two detectors to resolve the sterile neutrino puzzle. While SBND progresses through commissioning, ICARUS has been pursuing single-detector physics:

See Neutrino2024's talk for recent updates on these topics!



## **ICARUS POT**

Total BNB POT:  $3.9 \times 10^{20}$  (FHC)

Total NuMI POT:  $3.4 \times 10^{20}$  (FHC),  $2.8 \times 10^{20}$  (RHC)







## **Cosmic background rejection**







## NuMI bunch timing Light-only reconstruction

• After fitting the bunch structure, the **spacing** between the bunches is  $18.828 \pm 0.003$  ns (53.1 MHz).



National Laboratory

M. Vicenzi - LIDINE 2024

## Superimposing all the bunches the **average** bunch width is $\sigma = 3.11 \pm 0.06$ ns.\*



correction using only light barycenter

