The DUNE Photon Detection System (Phase I)

Gabriel Botogoske On behalf of the DUNE collaboration LIDINE 2024 08/27/2024

CONTENTS

- Neutrinos and oscillation
- DUNE and goals
- LArTPC and Liquid argon Scintillation
- X-ARAPUCA
- DUNE PDS FD1 and FD2
- Proto-DUNE
- Conclusion

Mysteries of neutrinos

Even if neutrinos are fundamental particles which have been detected 70 years ago there **are still several open questions related to their properties**:

- Are neutrinos their own antiparticle ?
- What are the masses of neutrino?
- How are the mass ordered ? (mass hierarchy)
- Do neutrino and anti-neutrino oscillate in a different way? (CP violation)
- Are there other neutrino types or interactions ?

Neutrino Oscillation

 $\begin{bmatrix} 0.799 \dots 0.844 & 0.516 \dots 0.582 & 0.141 \dots 0.156 \\ 0.242 \dots 0.494 & 0.467 \dots 0.678 & 0.639 \dots 0.774 \\ 0.284 \dots 0.521 & 0.490 \dots 0.695 & 0.615 \dots 0.754 \end{bmatrix}$

The flavor eigenstate of a neutrino is a linear combination of three mass eigenstates:

The probability of transition from a muon neutrino to an electron neutrino is:

$$P(v_{\mu} \rightarrow v_{e}) \sim \sin^{2}(2 \theta_{13}) \sin^{2}(\theta_{23}) \sin^{2}(\Delta m_{12}^{2}L/4E)$$

Where we neglect CP violation terms and matter effects.

Deep Underground Neutrino Experiment (DUNE)

DUNE goals

- **Neutrino oscillation** parameters:
 - Mass ordering
 - CP violation
 - Better precision on parameters
- No beam data
 - -Proton decay
 - -Solar neutrinos
 - -Supernova neutrinos
 - -BSM
 - -and more

LArTPC (Liquid Argon Time projection Chamber)

Charged particle in LAr produces free ionization electrons and scintillation light (128 nm)

time

LArTPC DATA

TPC Wires

Scintillation

Production of photons in argon: 40000 photons/MeV
@ 0 kV/cm

X-ARAPUCA

ARAPUCAs are light-collecting devices;

They are composed of:

- Mechanical structure p-Terphenyl (pTP) layer
- Dichroic filter

(SiPMs)

- Light guide bar
- Reflective foil (Vikuiti) Silicon Photomultiplier

DUNE Far Detectors

- 4 LArTPCs of 17 kton and 1.5 km underground
- Phase I :

FD1 - Horizontal Drift LArTPC FD2 - Vertical Drift LArTPC

- Phase II :

FD3 and FD4: Vertical drift

FD1-HD

- 4 Drift Volume (3.6 m x 58 m x 12 m)
- 3 Anodes and 2 cathodes
 - Cathode \rightarrow 2 CPA array \rightarrow each 150 (6x25) Cathode Plane Assembly (CPA) at: -180kV
 - 3 Anode Plane → each 50 (2x25) Anode Plane Assembly (APA) at ground potential

4 wire planes: 1 Collection (X), 2 Induction (U,V) and 1 Grid (G)

- Fiducial volume: 10 kton
- Field Cage to uniform Electric Field

Electric field: 500 V/cm 25000 photons/MeV and 27000 electrons/MeV

PDS

- What is the goal of PDS?
 - \rightarrow Increase energy resolution
 - \rightarrow Trigger for non beam events
 - \rightarrow Better time precision
 - \rightarrow Measurement of t₀
 - \rightarrow Cross check with charge measurements
 - \rightarrow Charge correction
 - electron drift speed:
 - ~ 1.6 mm/µs
 - photon speed:
 - ~ 2x10⁵ mm/µs

PDS-HD

- 6 dichroic windows with a pTP layer

Channels and electronics

1 channel = 1 SuperCell (48 SiPMs) \rightarrow Bias and signal \rightarrow same line

- Passive ganging: 6 SiPM from mounting board
- Active ganging: 8 SiPM mounting board Cold amplifier → Differential Signal
- Warm electronics: **DAPHNE** (**D**etector electronics from **A**cquiring **PH**otons from **NE**utrinos): Amplification, digitalization, sending to DAQ, and more

based on **mu2e** cosmic ray veto

Proto-DUNE @CERN

FD2-VD

- First module to be delivered
- It has evolved from old concept for FD2 Dual Phase LarTPC
- Two drifts volumes (each with 6.5 m x 13.5 m x 60 m)

2 Anode Planes → 1 Anode Plane have 80 Charge Readout Planes (CRP)

- CRP (3 m x 3.4 m) \rightarrow Each CRP have 2 CRU (Charge Readout Unit)
- -3 readout charge channel made of 2 perforated PCBs per CRU

Cathode \rightarrow -294 kV Electric field = ~ 450 V/cm

A lot of challenges due to the HV and dual phase characteristics

HD VS VD

- cheaper and simpler than HD
 - Better light coverage

PDS-VD

MEGACELL X-ARAPUCA

- Dimension 65 cm x 65 cm
- One WLS slab (Glass to Power)
- 160 SiPMs (40 at each side)
- SiPM \rightarrow 6 mm x 6 mm
- 16 dichroic filter per side
- 2 channels → 80 SiPMs/channel

Cathode:

- ightarrow 80 cathode modules (same size of CRP)
- \rightarrow Each cathode model has 4 X-Arapuca Megacell double-faced

 \rightarrow total: 320 double faced Megacell

Walls:

 \rightarrow Behind the field cage (70% transparent) on the four membrane walls

→320 at long walls (20 columns) + 32 short walls (4 columns)

= 352 single faced X-ARAPUCAs

Double face module

in the second second

SIngle face module

Membrane Modules

 \rightarrow For all the modules (cathode and membrane): \rightarrow 20 SiPMs passively ganged (one flex PCB)

- \rightarrow 4 flex PCBs are actived ganged: 80 SiPM \rightarrow 1 channel
- \rightarrow Cold transimpedance amplifier \rightarrow Fully differential amplifier

Cathode modules

- Cathode is almost at -294 kV \rightarrow Avoid electric path
- Power-over-Fiber (PoF)
- Signal-over-Fiber (SoF)

- Noise Immunity
- Voltage Isolation
- Spark free

Power-over-Fiber

Laser (808 nm, 2 W) \rightarrow Optical fiber \rightarrow Gallium Arsenide (GaAs) Photovoltaic Power Converters (PPC)

Bias the cold electronics:

 $PoF \rightarrow PPC \sim 7 V$ (3 in parallel for more current output)

```
\rightarrow Low Dropout Regulator (LDR) \rightarrow ~ 5 V
```

- Bias the SiPMs:
 - \rightarrow DC-DC Step-Up converter

 \rightarrow up to 50 V

Del. Power

(W)*

0.6

0.4

Signal-over-Fiber

- Fabry-Pérot diode laser current →1310 nm (infrared)
- Optical Fiber \rightarrow InGaAs PhotoDiodes

Electronics:

- First stage amplifier: active ganging (20x4 = 80 SiPMs)
- Second stage amplifier: Differential do single ended
 - Laser Driver: Voltage to current

21

Proto-DUNE @CERN

Proto-DUNE VD

- Proto-DUNE DP $i \rightarrow$ Double phase
- \rightarrow Based on PMTs
- $! \rightarrow$ Problems with HV
- $! \rightarrow Validated some aspects$
- of the actual FD2

→ 4 CRPs (2 on each anode) → 8 Cathode X-Arapucas +8 Membrane X-ARAPUCA

Goals:

- Test of X-ARAPUCA on HV cathode
- 70% field cage
- more...

HD VS VD : PDS

Caracteristics	HD	VD
ARAPUCA geometry	SUPERCELL (49 cm x 10 cm)	MEGACELL (65 cm x 65 cm)
Average Light yield	~ 30 PE/MeV	39 PE/MeV
Light Coverage	~ 13% of the anode	15% (cathode) + 7.4% (walls)
SiPMs numbers	48 - 1 channel	160 - 2 channels
SiPMs coverage	3.8%	1.6%
Efficiency	2 ~ 3 %	~ 3%
		More on next talk Sergio

X-ARAPUCAs coating

 \rightarrow SUPERCELL and MEGACELL

UNICAMP (Brazil/Campinas) +

University Federico II (Italy/Naples)

Conclusion

- X-ARAPUCAs devices to detect the light
- HD will use the supercell geometry while VD will use the megacell geometry with two different approaches: membrane and cathode modules
- ProtoDUNE SP showed good results with the ARAPUCAs, and the horizontal drift LArTPC design
- ProtoDUNE HD going to test the SUPERCELL at the HD geometry
- SoF and PoF already tested on cryogenic environment
- ProtoDUNE VD will start operation probably at the start of 2025 to validate more aspects of the PDS

BACK-UP

Xenon doping

It converts the slow component 127nm photons to 178 nm Goals:

• Improve light detection:

Rayleigh Scattering: 127nm: 1m 178nm: 4m

- Mitigate Nitrogen Contamination
 - \rightarrow Nitrogen quenches Triplet states
 - \rightarrow Competition between Xenon and Nitrogen

