

Advances on MagLITe

Deposition and Photocollection efficiency

August 27th, 2024

Bruno Gelli, on behalf of the MagLITe Collaboration

WLS coated PDS systems

Now in the era of large kton-experiments, **photodetection systems** are still a **major part** of most experiments.

 \rightarrow Triggering, PID, combined light-charge analysis and futurelly for event matching.

Most large area PDS systems **rely on** the use of **external Wavelength Shifters** (WLS)

This delicate films can be **negatively impacted** by being exposed.

- Dissolution in liquid noble
- Mechanical damage during installation
- Factor of 0.5 in efficiency

MagLITe

The **MagLITe** (**Mag**nesium Fluoride Light collection Improving Technique) is a technique in development by our group, and it consists in **coating the external WLS with a protective thin film**.

This technique can help with **all drawbacks** discussed

The **emanation problem** can be solved. By having a **physical barrier** between the organic compounds and the noble liquid.

It also helps to **protect the organic films** from mechanical and chemical damage.

And finally, it can also help with the loss of efficiency.

By choosing a material with the **right refractive index** and choosing the right coating thickness, the film can also **act as an anti-reflective coating**

To properly design **MagLITe** it is fundamental to have access to the material optical properties, i.e. **refractive index** and the **extinction coefficient**.

→ We began a big effort of measuring this properties.

August 27th, 2024

To properly design **MagLITe** it is fundamental to have access to the material optical properties, i.e. **refractive index** and the **extinction coefficient**.

→ We began a big effort of measuring this properties.

August 27th, 2024

To model the optical film, we used a **custom Transfer-Matrix Method** (TMM) script to include the light conversion inside the WLS.

Although many designs are possible, we chose to pursue a simple $\lambda/4$ anti-reflective layer for pTP over quartz. This was chosen to reflect some of the most common WLS applications.

August 27th, 2024

Double Deposition

The key component in constructing **MagLITe** is the deposition of **Magnesium Fluoride over the WLS**. The evaporation **temperature difference** between MgF_2 and pTP (950 °C vs 200 °C) makes it a challenging deposition.

Moreover the surface roughness has to be O(nm) for the film to work properly

 \rightarrow Thermal evaporation under strict deposition protocol.

LAr Setup

To measure the MagLITe efficiency, a Liquid Argon Test setup was designed \rightarrow Geometry was Geant4 validated

Scintillation light excites the samples and provides the correct refractive index \rightarrow Hamamatsu R1398 photomultiplier

Key feature: samples are sequentially measured

Same run, same environmental condition \rightarrow **reduced uncertainty**

August 27th, 2024

August 27th, 2024

LIDINE 2024 - São Paulo

A thin film ²⁴¹Am source ($\alpha @ 5.5$ MeV, ~33 kBq) was used to excite the liquid argon. \rightarrow Pressure and voltage - slow control to ensure a constant environment.

Data was acquired using **Caen DT5751 Digitizer** at 1 GSa/s, both in **threshold trigger** and in **random trigger** mode.

Data was acquired over several runs producing many gigabytes of data each

Data analysis

August 27th, 2024

The first check is too make sure the **purity is constant** during the acquisition.

→ Stable photon yield

Although the average number of photons was smaller than needed to see the long component of LAr scintillation, as expected from the simulation, it was still possible to extract purity information

August 27th, 2024

Another check was making sure to-be compared measurements had the same SPE charge

→ Stable PMT gain

Passing all checks, samples data could be directly compared

 \rightarrow Other than efficiency, all parameters are the same

Charge histograms were **normalized** and **MINUIT fitted** to each other.

 \rightarrow The scaling factor corresponds to the relative efficiency of the samples

August 27th, 2024

Bare pTP sample

MagLITe sample

Bare pTP sample

MagLITe sample

August 27th, 2024

Bare pTP sample

MagLITe sample

August 27th, 2024

Conclusion

In conclusion, MagLITe shows itself as a strong technique for light detection systems.

- Increase light collection
- Protective film

We were able to construct the MagLITe films and test against standard bare WLS samples, achieving an efficiency increase of **1.073 ± 0.013**.

• Hypothetical 5% efficiency PDS \rightarrow 5.35%

Better measurements on the WLS complex refractive index allow new designs, potentially further increasing the efficiency .

• Multilayer interference filters

New tests are already on the schedule.

- Other WLS
 - **TPB**
 - **PEN**
 - BisMSB

Alternating MgF $_2$ and WLS \rightarrow High-Low index design

Obrigado!

Backup: Purity

Before N₂ added

Backup: Filter design vs thickness

Backup: S-polarized reflectivity

Backup: P-polarized reflectivity

Backup: Sq thick

August 27th, 2024

Backup: Sq thin

Filme_512_4um.SIG_TOPO_FRW.flt [Height] 1:1 (Gwyddion) -		Statistical Quantities	– 🗆 X
• <u>Ourn</u> • <u>Our</u>	52.5 nm - 45.0	Origin 0.000 μm 0 px X 0.000 μm 0 px Y 0.000 μm 0 px Size 512 px Width 4.000 μm 512 px Height 4.000 μm 512 px	Moment-Based Average value: 14.88 nm RMS roughness (Sq): 2.205 nm RMS (grain-wise): 2.203 nm Mean roughness (Sa): 1.510 nm Skew (Ssk): -0.3727 Excess kurtosis: 2.782
	35.0	Masking Mode Exclude masked region Include only masked region Use entire image (ignore mask) Options	Order-Based Minimum: 0.00 nm Maximum: 24.45 nm Median: 15.10 nm Maximum peak height (Sp): 9.58 nm Maximum pit depth (Sv): 14.88 nm Maximum height (Sz): 24.45 nm
	25.0	 Instant updates 	Hybrid Projected area: 15.57 µm² Surface area: 15.61 µm² Volume: 0.2316 µm³ Surface slope (Sdq): 0.06512 Variation: 0.511 µm²
	15.0		Variation: 0.5214 μm² Inclination θ: N.A. Inclination φ: N.A. Other Scan line discrepancy: 0.03951
0020 um 1535 um): 14.77 nm = 1.477e-08 m	10.0 5.8	<u>H</u> elp Upda	2e6 1.5 Colon: Image: Colon: ste Clear Hide