

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Enhanced electroluminescence in LXe on thin strips

G. Martínez Lema1,2 V. Chepel³ A. Breskin¹

1 Weizmann Institute of Science 2 Ben Gurion University of the Negev 3 University of Coimbra - LIP

Single-phase detectors with EL amplification

- Advantages
	- No liquid-gas interface
		- Reduced instabilities (interface ripples)
		- No delayed e emission or e transfer inefficiency through interface
		- No gate-interface-anode alignment problems
		- Potential improvement for S2-only events (e.g. lower background)
- Drawbacks
	- Electric fields ~few 100 kV/cm required for electroluminescence (EL)
	- So far, lower light yield than dual-phase detectors

[Breskin 2023](https://iopscience.iop.org/article/10.1088/1748-0221/17/08/P08002)

EL amplification in noble liquids

- Thin wires
	- **Simple**
	- Challenges in upscaling
		- Wire tensioning
		- Difficult to deploy long wires
		- Wire staggering under high fields
- Microstrips
	- Mechanically more robust
- [Martinez-Lema et al](https://iopscience.iop.org/article/10.1088/1748-0221/19/02/P02037)

- Modular
- Instabilities due to insulating substrate?
- VUV transparency still to be worked out

EL amplification in LXe

- **Thresholds**
	- Charge multiplication ~ 725 kV/cm [Aprile et al](https://arxiv.org/pdf/1408.6206.pdf)
	- Electroluminiscence ~ 412 kV/cm [Aprile et al](https://arxiv.org/pdf/1408.6206.pdf)
	- Microstrips measurements in agreement [Martinez-Lema et al](https://iopscience.iop.org/article/10.1088/1748-0221/19/02/P02037)
- Thin wires (5-25 μm)
	- ~ 290 photons/ie, ~x14 charge gain @ 6.75 kV [Aprile et al](https://arxiv.org/pdf/1408.6206.pdf)
	- 17 photons/ie @ 3.6 kV & single electron sensitivity [Qi et al](https://arxiv.org/abs/2301.12296)
	- 29 photons/ie @ 4.4 kV [Tönnies et al](https://arxiv.org/abs/2405.10687)
- Microstrips
	- ~x10 e⁻ multiplication @ 1.7 kV [Policarpo et al](https://www.sciencedirect.com/science/article/pii/0168900295004572?via%3Dihub)
	- ~33 photons/ie @ 2 kV [Martinez-Lema et al](https://iopscience.iop.org/article/10.1088/1748-0221/19/02/P02037)

[Policarpo et al](https://www.sciencedirect.com/science/article/pii/0168900295004572?via%3Dihub)

[Martinez-Lema et al](https://iopscience.iop.org/article/10.1088/1748-0221/19/02/P02037)

LIDINE-2023: EL amplification on MSGC

- MSGC: wide (400 μm) cathode interleaved with narrow (8 μm) anode strips with 1 mm pitch on glass
- ≥ 33 photons/electron at strips $\Delta V = 2$ kV, $\sim x3$ e⁻ multiplication MSGC

[Martinez-Lema et al](https://iopscience.iop.org/article/10.1088/1748-0221/19/02/P02037)

Microstrips in LAr (preliminary)

Not presented in LIDINE 2023!

- Same geometry as in LXe
- Lower light yield than Lxe $(-1$ ph/ie)
- EL threshold ~350-600 kV/cm
- CM threshold ~430-650 kV/cm

paper in preparation

Prospects of different MSP geometries

- MSGC operation is limited by discharges between anode and cathode strips
	- Other geometries can enhance light yield
	- COMSOL-based extrapolations predict much higher light yields for $\Delta V = 5$ kV (unreachable with MSGC)

G. Martínez Lema – Enhanced electroluminescence in LXe - LIDINE, 28/08/2024

Virtual Cathode Chamber (VCC) design

- Thin anode strips on top face
- Thin conductive layer on the bottom face
- Higher applicable potentials
- First proposed by [Capeans et al](https://doi.org/10.1016/S0168-9002(97)00947-9)

VCC field

Our setup

Our plate

2-μm-wide anode strips, 130 nm thick 1.5-mm-thick substrate

S8900 semiconductive glass*

Typical PMT waveforms

Substrate charge up/polarization

under review!

- Strong reduction of S2 yield over time
- Stable photoyield only after several hours
- Possible interpretations:
	- Polarization of the substrate
	- Charging up of the surface unlikely: very low source rate & very low charge multiplication

Light yield vs voltage

- PMT waveform integrated on a fixed time window
- Converted to PE based on an in-situ PMT calibration
- S2 integral increases with ΔV
- **- EL threshold @ ΔV ~ 200 V**

Light yield vs voltage

- Measurements taken with a fixed few min delay

between data points to reduce time-dependence

Light yield $\omega \Delta V = 5$ kV, close to saturation:

~**30 photons/e-**

effect of

source

ΔV

6000

5000

 $= -2.0$ kV

 $= 0 - 5$ kV

 $V_{\text{anode}} = +3.0 \text{ kV}$

substrate? • •

Maximum light yield

- Observe S2 as a function of time for **ΔV = 5 kV**
- Maximum initial S2 \sim 9.3 \cdot 10⁴ photons \rightarrow ~500 photons/electron
- Different substrate might results in a stable high light yield

G. Martínez Lema – Enhanced electroluminescence in LXe - LIDINE, 28/08/2024

Charge

- Parallel plate configuration (no field across plate)
- Charge sensitive preamp on strips
- In agreement with **Aprile et al**
- Other charge measurements in progress

Preliminary energy resolution

- Gaussian fit to the S2 integral spectra
- σ/μ ~ 14 % @ ΔV = 5 kV
- Affected by time variations of S2 yield
- Potential to improve with different

substrate

Summary

- Single-phase detectors →solutions to problems faced by dual-phase TPCs
- Microstrip plates \rightarrow EL & CM in liquid with some charge and high light yields
- Former light yield measurement in LXe potentially improved using a VCC design
	- up to **~500 photons/electron** before substrate chargeup/polarization
	- **~30 photons/electron** in more stable conditions (VCC) vs 33 photons/electron (MSGC)
	- Performance severely compromised by the choice of substrate
	- Charge multiplication yields still under study
- Other substrates must be studied to improve stability
	- $\,$ Quartz or MgF $_{2}$ needed for high UV transparency
	- Lower resistivity ion glass vs electronic glass?
	- Could surface resistivity be lowered by surface treatment (e.g. ion implantation)? Experts needed!

Paper in preparation!

Acknowledgements

- This work was supported in parts by CERN-RD-51/DRD1 Collaboration Common Project and by Fundação para a Ciência e Tecnologia, Portugal (project CERN/FIS-INS/0013/2021)
- GML thanks Dr. Lior Arazi of the Unit of Nuclear Engineering at Ben Gurion University & VC thanks the Physics Faculty of Weizmann Institute, for their support.

Thank you for your attention

Microstrips

- First proposed by [A. Oed](https://doi.org/10.1016/0168-9002(88)90970-9) in 1988 for the MicroStrip Gas Chamber (MSGC)
- Thin strips deposited on a substrate (ideally VUV-transparent)
- Original design: cathode and anode strips interleaved

Single phase concept with Microstrips

Substrate resistivity vs T

G. Martínez Lema – Enhanced electroluminescence in LXe - LIDINE, 28/08/2024

Geometry optimization

- Current geometry
	- 2 mm pitch
	- 2 μm strip width
	- 1.5 mm substrate thickness
	- Semiconductive glass
- Possible optimizations
	- 1 mm pitch →same field, less insulating area
	- Different substrate

Strip profile

EL & CM model

Aprile et al	$\frac{dN_e}{dx} = N_e(x) \cdot \theta_0 \cdot e^{-\frac{\theta_1}{E(x) - \theta_2}}$	θ_{0-4} model parameters
$\frac{dN_\gamma}{dx} = N_e(x) \cdot \theta_3 \cdot (E(x) - \theta_4)$	$E(x)$ from COMSOL	