

Mechanical Design of Collimators and Manufacturing Strategy

Review of the Cryogenic By-pass for the LHC DS Collimators 26.05.2011

Alessandro Bertarelli (EN-MME)

on behalf of the EN-MME Collimation Team with inputs from many colleagues in EN, TE and BE departments

TCLD MECHANICAL DESIGN

COLLIMATOR MODULE (TCLD) LAYOUT

Mechanical Equipment

Vacuum Equipment

Key Features

- TCLD fully independent
- Specific support and jacks
- Horizontal Orientation
- Hydraulic and electrical manual connections

TCLD PRODUCT BREAKDOWN

A. Bertarelli EN/MME 26.09

CERN

TCLD JAW DESIGN (1/2)

Key Features

- Total length: 1200 mm (including 100m tapering)
- Active length: 1000 mm (5 blocs x 200 mm)
- Asymmetric jaw supporting system
- Continuous cooling circuit
- Contactless RF shielding
- BPM pickups: 2 per jaw
- Temperature Diagnostics (2 PT100 per jaw)

BPM Pick-up buttons

TCLD JAW DESIGN (2/2)

Key Features

- Block width: 20 mm
- Block height: 30 mm
- Bloc material: 95%W+3.5%Ni+1.5%Cu (Inermet IT180)
- Water Flow rate: ≤ 5 L/min (3 m/s)
- Water Inlet Pressure
 9÷16 bar
- Test pressure 50 bar

THERMAL LOAD ON JAW

Specified Heat Loads

- 40 W (Steady-state 1 hr Beam Lifetime)
- 200 W (10 s transient 0.2 hr Beam Lifetime)
- Specified max Thermal Deflection
 - 50 µm (Steady-state)

Expected thermal deflection

- 12 µm (Steady-state)
- 20 µm (10 s transient)

RF CONFIGURATION FOR TCLD

ACTUATION SYSTEM

Support Frame (Al 6082)

Stroke LVDT x 3

Stroke switch x 5

Sliding Table 1 (Al 6082)

> Sliding Table 2 (Al 6082)

Return Spring X 2

Key Features

- 1 D.o.F per jaw (1 motor, no angular adjustment)
- Jaw stroke: 25 mm
- Jaw auto-retraction up to ~ 170 mNm (no autoretraction in case of motor short-circuit)
- Phase 1 Stepping Motors and Electronics

Stepping Motor X 2

Linear Bearing and Shaft X 2

ACTUATION SYSTEM

- All-metal sealed Linear Ball Bearings
- Graphite Dry Film Lubricated (DAG 156)
- Graphite Sealing Ring

SFERAX 4060

Dim.= D60; d40; L72 mm Stainless steel (tested on Phase 2 Table for 30000 cycles)

MANUFACTURING STRATEGY

EN-MME WORK-PACKAGE

1. DS Collimators for IR3 (LTC) – 5 units

- Engineering & Design
- Manufacturing and assembly of 5 units (QTC+TCLD)

Object of this review

- **2. Phase 1 collimators for IR3** (Phase 1+) 7 units.
 - Design update.
 - Manufacturing of 1 Primary Collimator (TCP)
 - Procurement of raw material and strategic components.
- 3. TCTP (Tertiary Collimators with BPMs) 18 units.
 - Engineering & Design
 - Manufacturing of 1 prototype.
 - Procurement of raw material and strategic components.
- **4. Phase 2 Advanced Collimators** 3 prototypes.
 - R&D, Engineering, Design
 - Manufacturing of 3 prototypes.

WORK-PACKAGE ORGANISATION

CERN

WORK APPROACH

- Extensively rely on existing/proven designs and technologies
- Co-Design / Close cooperation with "Technology-owner" groups
 - Bus-bar (TE-MSC), UHV components (TE-VSC), Cryogenics (TE-CRG), Cold Tests (TE-MSC),
 Survey (BE-ABP), Fluka (EN-STI), Integration (EN-MEF), BPMs (BE-BI) ...
- Extensive subcontracting of manufacturing
 - Machined components, "controllable" welded components
- In-house critical activities
 - Critical welding, assembly, controls, tests ...
 - CERN resources complemented by Industrial Support contracts
- Separate manufacturing lines for TCLD and QTC
 - TCLD in specific facility at B.100
 - QTC in B.112 or SMI2 (feasibility analysis ongoing)

MANUFACTURING TIMELINE

CHALLENGES

- Many interactions with several parties during assembly and testing phases.
- Use of subcontracted resources for QTC manufacturing requiring training and close follow-up.
- Risks of manufacturing conflict with other priority projects (Linac4, Shut-down preparation, other collimators) in case of delays.
- LTC production to end by late spring 2013. Conflicts in manpower allocation with Splice Consolidation cannot be ruled out.

Thank you for your attention!

Tungsten block assembly

CERN

RF CONFIGURATION FOR TCLD COLLIMATOR – extra illustrations

RF extremity fingers

Horizontal fixed contact Vertical mobile contact

RF screen contacts

RF screen/tank contact

TEMP. PROBE CONFIGURATION

4 Temperature probes (1at each jaw extremity)

CÉRN

ACTUATION SYSTEM

W-GLIDCOP THERMAL CONTACT

$$h_{c}(P) := 1.55 \cdot \frac{k_{s} \cdot \Delta_{a}}{R_{q}} \cdot \left(\frac{\sqrt{2} \cdot P}{E' \cdot \Delta_{a}}\right)^{0.94}$$

Glidcop to W

Pressure 15 bar

hc = ~5000 kW/m2.K

Selection of ball bushings and lifetime estimation

Characteristics of the linear guide

Shaft diameter: d = 40 mm

Sferax metric series "standard"

type 4060, page 25

Shaft type AX, page 54, inox DIN X90CrMoV18 1.4112, 59 HRC

Verification for static load

Static load capacity

$$P_s := 7350 \cdot N$$

Applied load

$$P := max(W)$$

$$\frac{P_{\rm S}}{P} = 13$$

$$P = 588 \, \text{N}$$

static load is ok!

Dynamic verification Dynamic factor Y

Y := 0.000130

Coefficient of shaf hardness, page 20, for 59 HRC

$$X := 1.12$$

Coefficient of the working life expectation

$$fl := X \cdot Y \cdot P$$

$$fl = 0.0856 \,\mathrm{N}$$

Life expectancy from diagram page 21 is >100x10^6 m

 $L_{\text{rated}} := 100 \cdot 10^6 \cdot m$

Required life

$$N := 20000$$

$$L_{req} := 2 \cdot stroke \cdot N$$

$$\bigcirc$$

$$L_{\text{req}} = 1200 \,\text{m}$$

SCHEDULE

DRAFT BUDGET

				Phase 1+						DS Collimators						
Scope		Engineering Production			Engineering, design											
				1 TCP + F fails). Mate added after stands, cra done by Mi	5 LTC ex-works. The budget includes work provided by SU and VSC as embedded "service". Components provided by MSC, BI, VSC for the as-delivered product are not included. It does not include components added at a later stage, e.g. Vacuum valves and gauges, motorization, electronics etc.											
		Grand T (To Be Provi		Total (TBP)	Prov. (61711)	2011 (TBP)	2012	2013	2014	Total (TBP)	Prov. (61711)	2011 (TBP)	2012	2013	2014	
(KCHF)	Total	8696.8		737.6	480.6	122.8	52.1	562.8	0.0	5949.0	1151.4	3095.6	2287.1	566.3	0.0	
	Engineering	Sub-Total	971.6	30.6	0.0	12.8	5.1	12.8	0.0	306.0	285.6	204.0	91.8	10.2	0.0	
	Production	Sub-Total	7725.2	707.0	480.6	110.0	47.0	550.0	0.0	5643.0	865.8	2891.6	2195.3	556.1	0.0	
Personnel (FTE)	Total	43.8		1.4	0.2	0.8	0.4	0.0	0.0	20.4	5.7	7.8	6.9	3.5	0.0	
	Engineering	Sub-Total	18.6	0.5	0.0	0.4	0.1	0.0	0.0	7.0	3.5	3.5	2.3	1.2	0.0	
		Staff	15.0	0.4	0.0	0.3	0.1	0.0	0.0	6.2	3.5	3.2	2.0	1.0	0.0	
		Fellows	3.6	0.1	0.0	0.1	0.0	0.0	0.0	0.8	0.0	0.3	0.3	0.2	0.0	
	Production	Sub-Total	25.2	0.9	0.2	0.4	0.3	0.0	0.0	13.4	2.2	4.3	4.6	2.3	0.0	
		Staff	18.5	0.7	0.2	0.4	0.3	0.0	0.0	8.9	2.0	3.5	3.6	1.8	0.0	
		Fellows	2.3	0.0	0.0	0.0	0.0	0.0	0.0	2.3	0.2	0.8	1.0	0.5	0.0	

DRAFT BUDGET

					Phase 2										
Scope		Enginee		R&D, Engineering, design											
		Production		1 TCTx	3 prototypes										
		Grand T (To Be Prov		Total (TBP)	Prov. (61711)	2011 (TBP)	2012	2013	2014	Total (TBP)	Prov. (61711)	2011 (TBP)	2012	2013	2014
(KCHF)	Total	8696.8		482.9	0.0	245.7	212.0	25.2	0.0	1527.3	552.1	237.0	458.9	548.1	283.3
	Engineering	Sub-Total	971.6	79.1	0.0	53.6	25.5	0.0	0.0	555.9	127.5	51.0	165.2	229.5	110.2
	Production	Sub-Total	7725.2	403.8	0.0	192.2	186.5	25.2	0.0	971.4	424.6	186.0	293.6	318.6	173.1
Personnel (FTE)	Total	43.8		3.8	0.0	1.9	1.9	0.0	0.0	18.2	4.5	2.4	4.1	5.2	4.5
	Engineering	Sub-Total	18.6	2.4	0.0	1.5	0.9	0.0	0.0	8.7	2.5	1.2	2.3	2.7	2.5
		Staff	15.0	1.6	0.0	1.0	0.6	0.0	0.0	6.8	1.5	0.8	1.8	2.2	2.0
		Fellows	3.6	0.8	0.0	0.5	0.3	0.0	0.0	1.9	1.0	0.4	0.5	0.5	0.5
	Production	Sub-Total	25.2	1.4	0.0	0.4	1.0	0.0	0.0	9.5	2.0	1.2	1.8	2.5	2.0
		Staff	18.5	1.4	0.0	0.4	1.0	0.0	0.0	7.5	2.0	1.2	1.8	2.5	2.0
		Fellows	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

600000

Collimation Upgrade Spending for Manufacturing (2010 - Jan 2011)

