NON-PERTURBATIVE STEP-SCALING AND ITS APPLICATION TO HEAVY QUARK PHYSICS

SIMON KUBERSKI BASED ON WORK WITH A. CONIGLI, J. FRISON, P. FRITZSCH, A. GÉRARDIN, J. HEITGER, G. HERDOÍZA, C. PENA, H. SIMMA, R. SOMMER

HADRONIC PHYSICS AND HEAVY QUARKS ON THE LATTICE HAMILTON MATHEMATICS INSTITUTE, TCD JUNE 4, 2024

Why should we do B-physics on the lattice?

- Search for BSM physics at the high-precision frontier: Deviations between Standard Model predictions and experiment in flavor physics observables.
- Several *B*-anomalies, e.g.,
 - Ratios testing lepton flavor universality.
 - Branching fractions of rare decays.
 - Tension between inclusive and exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$.
- Need precise determinations of hadronic matrix elements and quark masses.
- ightarrow Ab initio Standard Model predictions from lattice QCD.

MULTI-SCALE PROBLEMS IN LATTICE QCD

- By discretizing QCD in a finite volume, we introduce two cutoffs:
 - Infrared cutoff: $\Lambda_{\rm IR} \sim 1/L$
 - Ultraviolet cutoff: $\Lambda_{\rm UV} \sim 1/a$
- Finite-volume effects vanish exponentially $\propto \exp(-m_{\pi}L)$ \rightarrow require $m_{\pi}L \ge 4$.
- Cutoff effects vanish polynomially $\propto c_1 a + c_2 a^2 + c_3 a^3 + c_4 a^4 \dots$, possibly with logarithmic corrections [Husung et al., 1912.08498]

 \rightarrow For energy scales $q{:}$ fulfill $aq \ll 1$ for reliable continuum extrapolations.

 $L^{-1} \ll m_\pi \approx 135 \,\mathrm{MeV} \ll q \ll a^{-1}$

 $L^{-1} \ll m_\pi \approx 135 \,\mathrm{MeV} \ll q \ll a^{-1}$

- The cost to generate ensembles scales at least with L^5 .
- What are the energy scales that can be reached at physical pion mass?
 - $m_{\pi}^{\text{phys}}L \ge 4$ implies $L \ge 6 \text{ fm}$ (assume $T \gg L$ here).
 - State of the art: L/a = 96 at a = 0.06 fm $\rightarrow a^{-1} \sim 3.3$ GeV⁻¹.
 - Largest on the market: L/a = 144 at $a = 0.04 \text{ fm} \rightarrow a^{-1} \sim 4.9 \text{ GeV}^{-1}$.
- We are limited in view of the energy scales, e.g. quark masses, that we can simulate on large lattices.

QUARK MASS DEPENDENT CUTOFF EFFECTS

 Consider (finer than) conventional lattice spacings

 $0.031\,\mathrm{fm} \le a \le 0.083\,\mathrm{fm}$

in finite-volume.

 Continuum extrapolation of the pseudoscalar heavy-light decay constant at fixed (renormalized) quark masses.

 \blacksquare For illustration: Use three finest resolutions $\leq 0.05\,{\rm fm}$ to extrapolate with

$$f_{\rm hl}(a) = p_0 + p_1 \cdot a^2$$

NON-PERTURBATIVE STEP-SCALING

THE RUNNING COUPLING OF QCD

THE CASE OF THE STRONG COUPLING CONSTANT

The computation of the strong coupling constant $\alpha_s(q)$ is a multi-scale problem:

Define α_s from an Euclidean short-distance quantity $\mathcal{O}(q)$ with the perturbative expansion (see, e.g., [Dalla Brida, 2012.01232]),

$$\mathcal{O}(q) \stackrel{q \to \infty}{\approx} \sum_{n=1}^{N} c_n \alpha_{\overline{\mathrm{MS}}}^n(q) + \mathcal{O}(\alpha_{\overline{\mathrm{MS}}}^{N+1}) + \mathcal{O}\left(\frac{\Lambda^p}{q^p}\right) \longrightarrow \alpha_{\mathcal{O}}(q) \equiv \frac{\mathcal{O}}{c_1},$$

up to truncation errors.

- Converges as $\alpha_{\mathcal{O}}(q) \stackrel{q \to \infty}{\propto} 1/\log(q/\Lambda_{QCD}) \to have to reach high energy scales.$
- Possible solution to the multi-scale problem [Lüscher, Weisz, Wolff]: Use finite-volume effects as part of the definition of $\alpha_{\mathcal{O}}(q)$,

$$\alpha_{\mathcal{O}}(q)$$
 with $q = L^{-1} \ll a^{-1}$,

and work with a series of lattices and physically small volumes.

$lpha_s$ from step-scaling I

[LÜSCHER ET AL, HEP-LAT/9207010, HEP-LAT/9309005]

1. Given $\alpha_{\mathcal{O}}(q_{\rm had} = L_{\rm had}^{-1})$ determine $q_{\rm had}/m_{\rm had} \sim 1$

2. Measure the change in $\alpha_{\mathcal{O}}(q = L^{-1})$ as you change the volume $L \to L/2$: the step-scaling function

$$\sigma_{\mathcal{O}}(u) \equiv \alpha_{\mathcal{O}}(2q)|_{u=\alpha_{\mathcal{O}}(q)}$$

with the implicit relation to the non-pert. β function,

$$\log(2) = -\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} \frac{\mathrm{d}x}{\beta(x)}$$

3. Starting from $q_{\rm had} \sim \Lambda_{\rm QCD}$, perform $n \sim {\rm O}(10)$ steps to reach

$$q_{\rm PT} = 2^n q_{\rm had} \sim \mathcal{O}(100 \,\mathrm{GeV})$$

where $\alpha_{\mathcal{O}}(q_{\rm PT}) \sim 0.1$.

- 4. Extract $\alpha_{\overline{MS}}(q_{\rm PT})$ from the perturbative expansion of $\alpha_{\mathcal{O}}$.
- 5. Compute $\Lambda_{\rm QCD}/m_{\rm had}$ by integrating the non-perturbative and perturbative β functions.

$$\Lambda = \mu \varphi(\alpha(\mu)),$$

$$\varphi(\alpha) = \dots \exp\left\{-\int_0^\alpha \frac{\mathrm{d}x}{\beta(x) + \dots}\right\}$$

from $\alpha_{\mathcal{O}}(q_{\text{had}})$ to $\alpha_{\mathcal{O}}(q_{\text{PT}})$ and from $\alpha_{\mathcal{O}}(q_{\rm PT})$ to 0.

NON-PERTURBATIVE STEP-SCALING

HEAVY QUARK PHYSICS

HEAVY QUARK PHYSICS

- A heavy (e.g. bottom) quark introduces an energy scale m_h in addition to Λ_{QCD} .
- Simulating relativistic bottom quarks at several resolutions is not possible in large volumes!

Extrapolation to the B scale is difficult, possibly mixing extra-/interpolations in a, m_h and q^2 for semi-leptonic form factors.

HEAVY QUARK PHYSICS

- A heavy (e.g. bottom) quark introduces an energy scale m_h in addition to Λ_{QCD} .
- Simulating relativistic bottom quarks at several resolutions is not possible in large volumes!

Employ effective field theories for low-energy physics

 $a \left| \vec{p} \right| \ll 1$, $\left| \vec{p} \right| \ll m_{\rm b}$

- here: Heavy Quark Effective Theory (HQET)
- \blacksquare Renormalizable effective theory \leftrightarrow continuum limit.

HEAVY QUARK EFFECTIVE THEORY

Heavy Quark Effective Theory

- Integrate out heavy degrees of freedom of QCD Lagrangian for one heavy quark.
- Expand the Lagrangian in powers of $1/m_{\rm h}$.

 $\rightarrow\,$ Possible to describe bottom physics at next-to-leading order in HQET.

$$\mathcal{L}_{\text{heavy}} = \bar{h}_v D_0 h_v - \omega_{\text{kin}} \mathcal{O}_{\text{kin}} - \omega_{\text{spin}} \mathcal{O}_{\text{spin}} , \qquad \mathcal{O}_{\text{kin}} = \bar{h}_v \mathbf{D}^2 h_v , \quad \mathcal{O}_{\text{spin}} = \bar{h}_v \sigma \cdot \mathbf{B} h_v$$

■ Perturbative matching at order g_0^{2l} leads to power divergences in the coefficients [Nucl.Phys.B 368 (1992) 281-292, Maiani et al.]

$$\Delta c_k \sim g_0^{2(l+1)} a^{-p} \sim a^{-p} \left[\ln(a\Lambda) \right]^{-(l+1)} \stackrel{a \to 0}{\to} \infty$$

due to mixing of operators differing in dimensions by p.

(NON-PERTURBATIVE) HQET

Can we just perform an interpolation between results in static HQET and results in relativistic QCD below m_b where $am_h \ll 1$?

(NON-PERTURBATIVE) HQET

- Can we just perform an interpolation between results in static HQET and results in relativistic QCD below m_b where $am_h \ll 1$?
- $\rightarrow\,$ No! Even the static approximation requires non-trivial renormalisation and matching that would have to be **computed non-perturbatively**.
- Existing strategy to renormalize HQET non-perturbatively via step-scaling techniques [Heitger and Sommer, hep-lat/0310035].
 → Quite challenging since 1/m_b effects are needed for precision.

THE STATIC THEORY

- Given the static action $\mathcal{L}^{\text{stat}} = \overline{\psi}_h D_0 \psi_h$, we have $E^{\text{stat}} \sim \frac{1}{a} g_0^2$. $\rightarrow E^{\text{stat}}$ divergent as $a \rightarrow 0$
- **Renormalization** $\rightarrow \delta m \sim \frac{1}{a}g_0^2$ and matching $\rightarrow m_b^{\text{finite}}$.
 - $\rightarrow E = E^{\text{stat}} + \delta m + m_b^{\text{finite}}$
- Heavy-light currents

$$V_k^{\text{stat}} = C_{V_k}(m_b) Z^{\text{stat}}(g_0) \overline{\psi}_h \gamma_k \psi_l$$
$$V_0^{\text{stat}} = C_{V_0}(m_b) Z^{\text{stat}}(g_0) \overline{\psi}_h \gamma_0 \psi_l$$

 \rightarrow Matching coefficients $C_{V_{k(0)}}(m_b)$ log-divergent as $m_b \rightarrow \infty$ [Sommer, 1008.0710].

Our strategy, based on [Guazzini et al., 0710.2229]:

Cancel renormalization and matching [Sommer et al., 2312.09811].

- Phenomenologically relevant: the q^2 dependence of semi-leptonic form factors.
- Form factor decomposition in the *B*-meson rest frame

 $(\sqrt{2}p_k^{\pi})^{-1} \langle \pi(p^{\pi}) | V_k(0) | B(\vec{p} = 0) \rangle = h_{\perp}(E_{\pi}) = h_{\perp}^{\text{stat}}(E_{\pi}) + O(1/m_{\text{b}})$

 \blacksquare Cancel matching and renormalization for $h_{\perp}^{\rm stat}$,

$$\frac{h_{\perp}(E_{\pi})}{h_{\perp}(E_{\pi}^{\mathrm{ref}})} = \frac{h_{\perp}^{\mathrm{stat}}(E_{\pi})}{h_{\perp}^{\mathrm{stat}}(E_{\pi}^{\mathrm{ref}})} + O(1/m_{\mathrm{b}}) \,.$$

• Connection with f_{B^*} : Normalize to the vector decay constant

$$h_{\perp}(E_{\pi}^{\mathrm{ref}}) = \hat{f}_{\mathrm{V}} \frac{h_{\perp}(E_{\pi}^{\mathrm{ref}})}{\hat{f}_{\mathrm{V}}} = \hat{f}_{\mathrm{V}} \left[\frac{h_{\perp}^{\mathrm{stat}}(E_{\pi}^{\mathrm{ref}})}{\hat{f}_{\mathrm{V}}^{\mathrm{stat}}} + \mathrm{O}(1/m_{\mathrm{b}}) \right]$$

ightarrow Problem solved for h_{\perp} . How to compute \hat{f}_{V} ?

STEP-SCALING

We can make use of the step-scaling toolbox:

■ Cancel matching and renormalization via ratios of observables *O*(*L*₂)/*O*(*L*₁) or differences of logs computed in two volumes :

$$\sigma_{\rm V} = \left[\log[L_{\rm ref}^{3/2} \hat{f}_{\rm V}(L_2)] - \log[L_{\rm ref}^{3/2} \hat{f}_{\rm V}(L_1)] \right]$$

Same ansatz to cancel the additive divergence in the static energy

$$\sigma_m = L_{\rm ref} \left[m_{\rm PS}(L_2) - m_{\rm PS}(L_1) \right]$$

Connect large-volume (CLS) ensembles with small volumes:

$$L_{\infty} \rightarrow L_2 = 1 \,\mathrm{fm}$$
 and $L_2 = 1 \,\mathrm{fm} \rightarrow L_1 = 0.5 \,\mathrm{fm}$

• Small volume $L_1 = 0.5$ fm: Simulate relativistic b quarks.

B-PHYSICS FROM STEP-SCALING

- QCD observables with relativistic b quarks in finite volume at $L_1 = 0.5$ fm where $a^{-1} \in [9.5, 25]$ GeV⁻¹.
- Step-scaling for observables with:
 - ► static quarks
 - relativistic quarks with $m_h < m_b$
- Contact with large-volume simulations.

THE VECTOR MESON DECAY CONSTANT FROM STEP-SCALING

• Vector meson decay constant
$$\hat{f}_V = f_V \sqrt{m_V}$$
,

$$\hat{f}_V = \sqrt{2} \langle 0 | V_k(0) | V(\vec{p} = 0, k) \rangle_{\rm NR} = \hat{f}_V^{\rm stat} + O(1/m_b) \,,$$

For the step-scaling, we define

$$\Phi_{\vec{V}}(L) \equiv \ln\left(\frac{L_{\text{ref}}^{3/2}\hat{f}_V(L)}{2}\right)$$

Compute the large-volume (physical) quantity via

$$\Phi_{\vec{V}} = \Phi_{\vec{V}}(L_1) + [\Phi_{\vec{V}}(L_2) - \Phi_{\vec{V}}(L_1)] + [\Phi_{\vec{V}} - \Phi_{\vec{V}}(L_2)]$$

Each observable is continuum extrapolated.

FIRST RESULTS

FOR THE VECTOR DECAY CONSTANT

[2312.09811] [2312.10017]

Interpolate observables to the B-scale:

- Interpolate between the static limit and $m_h \ll m_b$:
 - In large volume: Ratios of observables like $h_{\perp}(E_{\pi})/h_{\perp}(E_{\pi}^{\text{ref}})$ or $h_{\perp}(E_{\pi}^{\text{ref}})/\hat{f}_{V}$.
 - Step-scaling functions such as σ_V , σ_m .
- Interpolate relativistic measurements around $m_{\rm b}$:
 - In small volumes: Observables such as $\hat{f}_{\rm V}$, $m_B/m_{\rm b}$.
- Interpolations in $1/m_h$ are performed in the continuum limit:
 - Continuum extrapolations at the B-scale only for $a^{-1} \in [9.5, \ 25] \, \mathrm{GeV}^{-1}$
 - Cutoff effects partially cancel in differences.

$$\Phi_{\vec{V}} = \Phi_{\vec{V}}(L_1) + [\Phi_{\vec{V}}(L_2) - \Phi_{\vec{V}}(L_1)] + [\Phi_{\vec{V}} - \Phi_{\vec{V}}(L_2)]$$

CONTINUUM EXTRAPOLATION AT THE BOTTOM SCALE

- B-physics on fine lattices in small volumes
- Continuum extrapolations for vector (left) and axial (right) decay constants.
- Four heavy valence quark masses encompass the bottom quark mass.

INTERPOLATION TO THE BOTTOM SCALE

- B-physics on fine lattices in small volumes.
- Straight-forward interpolation to $m_h = m_b$.
- Interpolate in inverse heavy-light meson mass $1/y = 1/(L_{\rm ref}m_{\rm PS}(L_1)) \propto 1/m_h$

Step-scaling from L_1 to L_2 : continuum limit

- \blacksquare Continuum extrapolation of relativistic and static step-scaling functions for $\Phi_{\vec{V}}.$
- Vector and axial-vector decay constants are equal in the static theory.
- $L = 0.5 \text{ fm to } L = 1 \text{ fm. Only include } am_h^{\text{RGI}} < 0.8.$

L_2 to L_∞ : continuum limit

- Continuum extrapolation of relativistic and static step-scaling functions for $\Phi_{\vec{V}}$.
- $L = 1 \text{ fm to } L_{\text{CLS}}$. Only include $am_h^{\text{RGI}} < 0.8$.

relativistic: valence masses $m_h^{\rm RGI} < 0.3\,m_b^{\rm RGI}$

static

INTERPOLATIONS FOR DECAY CONSTANTS

- Interpolation to $1/m_B$: highly constrained by the static result.
- Step-scaling functions of pseudoscalar Φ_{A_0} and vector $\Phi_{\vec{V}}$ decay constant have the same static limit (heavy quark symmetry).

Results for $f_{B^\star}/f_{B_{\parallel}}$

- Combine all pieces to arrive at the final result.
- N.b.: We (currently) work at the SU(3) symmetric point.
 Expect light quark dependence in the ratio f_{B*}/f_B to be small.

Results for f_{B^\star}/f_B

- Combine all pieces to arrive at the final result.
- N.b.: We (currently) work at the SU(3) symmetric point.
 Expect light quark dependence in the **ratio** f_{B*}/f_B to be small.

- Puzzling situation for the ratios $f_{B_{(s)}}/f_{B_{(s)}^{\star}}$.
- Systematically improvable result with competitive uncertainties.
- Decay constants currently at about 2.5% precision, dominated by finite-volume statistical uncertainties.

Full step-scaling for $m_{ m b}$

- Slightly more involved: Compute $m_b^{\text{RGI}}(N_f = 3) = 6.605(61) \text{ GeV } [0.9\%].$
- \blacksquare Uncertainty dominated by running to RGI \rightarrow improvable external quantity.

Full step-scaling for $m_{ m b}$

- Slightly more involved: Compute $m_b^{\text{RGI}}(N_f = 3) = 6.605(61) \text{ GeV } [0.9\%].$
- \blacksquare Uncertainty dominated by running to RGI \rightarrow improvable external quantity.
- Expect very mild light-quark dependence [Heitger, Joswig, SK, 2101.02694]:

- Step-scaling solves the multi-scale problem in lattice QCD: Standard Model predictions that are limited by statistical and not systematic uncertainties.
- \blacksquare This leads to the most precise predictions for α_s on the market.
- Prospects to remove the dominant systematic uncertainties in B-physics predictions from lattice QCD.
- Next step: Proceed from the proof of concept to phenomenologically semi-leptonic form factors.
- The step-scaling is performed in the continuum: Results can be used with **any discretization of large-volume QCD**.

BACKUP: MORE RESULTS

THE MASS OF THE BOTTOM QUARK

[2312.09811] [2312.10017]

■ In small volume, compute

$$m_h^{
m RGI} = rac{M}{m_{
m R}(1/L_0)} rac{Z_{
m A}}{Z_{
m P}(L_0)} [1 + (b_{
m A} - b_{
m P})am_h] m_h^{
m PCAC}(L_1) \quad {
m and} \quad \pi_m = rac{m_{
m PS}(L_1)}{m_h^{
m RGI}}$$

with the running factor from [ALPHA, 1802.05243] and the renormalization and improvement from [Fritzsch, Heitger, SK].

Compute the bottom quark mass via

$$L_{\rm ref} m_h^{\rm RGI} = \left(L_{\rm ref} m_{\rm PS} - L_{\rm ref} [m_{\rm PS} - m_{\rm PS}(L_2)] - L_{\rm ref} [m_{\rm PS}(L_2) - m_{\rm PS}(L_1)] \right) \frac{m_h^{\rm RGI}}{m_{\rm PS}(L_1)}$$
$$\equiv \frac{L_{\rm ref} m_{\rm PS} - \rho_m(L_2) - \sigma_m(L_1)}{\pi_m(L_1)}$$

with the physical input for $m_{\rm PS}$. We choose $m_{\rm PS} = m_{\overline{B}} \equiv \frac{2}{3}m_B + \frac{1}{3}m_{B_{\rm s}}$ for $h = {\rm b}$.

THE BOTTOM QUARK MASS FROM STEP-SCALING

We have omitted the light quark dependence. Let's expand

$$\rho_m(L_2) = L_{\rm ref}[m_{\rm PS} - m_{\rm PS}(L_2)] = L_{\rm ref}\left[m_{\rm PS} - m_{\rm PS}^{\rm SU(3)}\right] - L_{\rm ref}\left[m_{\rm PS}^{\rm SU(3)} - m_{\rm PS}(L_2)\right]$$

where $m_{\rm PS}^{\rm SU(3)} \equiv m_{\rm PS}(m_{\pi} = m_K \approx 420 \,{\rm MeV})$ is the heavy-light meson mass at the SU(3) symmetric point.

- Normalize step-scaling to the SU(3) symmetric point (2 + 1 flavor CLS).
- Compute $L_{\rm ref}[m_{\rm PS} m_{\rm PS}^{\rm SU(3)}]$ for $m_{\pi} \to m_{\pi}^{\rm phys}$.
- Current status: Restrict to the SU(3) symmetric point.

CONTINUUM EXTRAPOLATION AT THE BOTTOM SCALE

• Continuum extrapolations at the bottom scale for the step-scaling approach.

- Left: Ratio of heavy-light meson mass and heavy quark mass m_H/m_h^{RGI} .
- Right: Vector decay constant.

L_1 to L_2 : continuum limit

• Continuum extrapolation of relativistic and static step-scaling functions for the quark mass $\Sigma_m = L_2 [m_H(L_2) - m_H(L_1)]$ and Σ_m^{stat} from L = 0.5 fm to L = 1 fm with $m_h^{\text{RGI}} < 0.5 m_b^{\text{RGI}}$.

L_2 to CLS: continuum limit

Continuum extrapolation of relativistic and static step-scaling functions for the quark mass $R_m = L_2 [m_H - m_H(L_2)]$ and R_m^{stat} from L = 1 fm to CLS with $m_h^{\text{RGI}} < 0.3 m_b^{\text{RGI}}$.

SSFs in the continuum

■ Interpolate SSFs to the bottom scale in the continuum, where $\sigma_m = \lim_{a \to 0} \Sigma_m$ and $\rho_m = \lim_{a \to 0} R_m$.

Full step-scaling for $m_{ m b}$

$$m_b^{\text{RGI}}(N_f = 3) = \frac{L_{\text{ref}} m_{\text{PS}} - \rho_m(L_2) - \sigma_m(L_1)}{L_{\text{ref}} \pi_m(L_1)} = 6.605(61) \text{ GeV} [0.9\%]$$

 \blacksquare Uncertainty dominated by running to RGI \rightarrow improvable external quantity.

Full step-scaling for $m_{ m b}$

$$m_b^{\text{RGI}}(N_f = 3) = \frac{L_{\text{ref}} m_{\text{PS}} - \rho_m(L_2) - \sigma_m(L_1)}{L_{\text{ref}} \pi_m(L_1)} = 6.605(61) \text{ GeV} [0.9\%]$$

- \blacksquare Uncertainty dominated by running to RGI \rightarrow improvable external quantity.
- Expect very mild light-quark dependence [SK, Heitger, Joswig, 2101.02694]:

