Scale setting on the $(2+1+1)$ -flavor HISQ ensembles: current status

Alexei Bazavov Michigan State University (on sabbatical at CERN)

with Claude Bernard, Carleton E. DeTar, Aida X. El-Khadra, Elvira Gamiz, Steven Gottlieb, Anthony V. Grebe, Urs M. Heller, William I. Jay, Andreas S. Kronfeld, Yin Lin

> Hadron physics and heavy quarks on the lattice, Trinity College, Dublin, June 4 — 7, 2024

- FLAG: gradient flow scales
- HISQ: action, ensembles
- Taste-breaking effects
- The gradient flow: definitions, corrections, integration
- Relative scale and the integrated autocorrelation time
- Absolute scale: a few examples w_0/r_1 , $w_0 f_\pi$, $w_0 M_\Omega$
- Conclusion

FLAG 2023 update: gradient flow scales

FLAG 2023 update: gradient flow scales

FLAG 2023 update: gradient flow scales

Lattice action

- One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, Phys. Lett. B (1985)
- The tadpole factor u_0 is tuned from the plaquette.
- The Highly Improved Staggered Quark action.

Lepage, Mackenzie, hep-lat/9209022

HPQCD, hep-lat/0610092

Lattice action

- One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, Phys. Lett. B (1985)
- The tadpole factor u_0 is tuned from the plaquette.
- The Highly Improved Staggered Quark action. Lepage, Mackenzie, hep-lat/9209022
- 2 degenerate light quarks, strange and charm at the physical masses. HPQCD, hep-lat/0610092
- Lines of constant physics $m_{\pi} \approx 135$, 200 and 300 MeV.
- $m_{\pi}L > 4$ on most ensembles.

Lattice action

- One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, Phys. Lett. B (1985)
- The tadpole factor u_0 is tuned from the plaquette.
- The Highly Improved Staggered Quark action. Lepage, Mackenzie, hep-lat/9209022
- 2 degenerate light quarks, strange and charm at the physical masses. HPQCD, hep-lat/0610092
- Lines of constant physics $m_{\pi} \approx 135$, 200 and 300 MeV.
- $m_{\pi}L > 4$ on most ensembles.
- RHMC updating, on the finest ensembles RHMD Kennedy, Horvath, Sint, heplat/9809092 Clark, Kennedy, hep-lat/0608015

• Smearing suppresses the dominant discretization effects from taste exchange interactions

• Smearing suppresses the dominant discretization effects from taste exchange interactions $\mathbf n$ taste exchand

Pion mass taste splittings

MILC, 1212.4768

• HISQ vs asqtad pion taste splittings (left).

Pion mass taste splittings

- HISQ vs asqtad pion taste splittings (left). $m_{\text{min}} = (1 - \Omega)$ $\sum_{i=1}^n \sum_{i=1}^n$
- · Splitting pattern for different quark masses (right).

$MII \cap HIR \cap \text{argmblac}$ MILC HISQ ensembles

div \mathcal{L} from those listed in Table I of Ref. [23], because those values assumed a mass-dependent and \mathcal{L}

0.06 *^ms/*5 6.72 0.0048 0.024 0.286 483⇥144 2.72 329 4.5 1016 Table from FNAL-MILC-TUMQCD, 1712.09262

$MII \cap HIR \cap \text{argmblac}$ MILC HISQ ensembles

div \mathcal{L} from those listed in Table I of Ref. [23], because those values assumed a mass-dependent and \mathcal{L}

0.06 *^ms/*5 6.72 0.0048 0.024 0.286 483⇥144 2.72 329 4.5 1016 Table from FNAL-MILC-TUMQCD, 1712.09262

$MII \cap III \cap \alpha$ MILC HISQ ensembles

Table from FNAL-MILC-TUMQCD, 1712.09262

$MII \cap III \cap \alpha$ MILC HISQ ensembles

- We compute provide provide pseudoscalar correlators for several valence-quark masses on each ensemble. The correlators on each ensemble \mathcal{L} • Additionally:
	- Retuned physical m , *l*m at $a = 0.15, 0.12$ and 0.09 (Call at) fm with $\frac{1}{2}$ and $\frac{1}{2}$ larger statistics. The finest equal mass computer that $\frac{L}{2011.12100}$ • Retuned physical m_l/m_s at $a = 0.15, 0.12$ and 0.09 (CalLat) fm with CalLat, 2011.12166
	- $\frac{1}{2}$ $\frac{1}{2}$ • Larger volume $128^3 \times 96$ at physical $m_l/m_s a = 0.09$ fm.
	- ζ a ζ and ζ and ζ . 0.06 and 0.00 fm, with lighter than the set of ζ • 6 ensembles at $a = 0.06$ and 0.09 fm with lighter-than-physical etrange quark mass determines with a ^{0.042} fm are used to determine the lightstrange quark mass.

$MII \cap III \cap \alpha$ MILC HISQ ensembles

- We compute provide provide pseudoscalar correlators for several valence-quark masses on each ensemble. The correlators on each ensemble \mathcal{L} • Additionally:
	- Retuned physical m , *l*m at $a = 0.15, 0.12$ and 0.09 (Call at) fm with $\frac{1}{2}$ and $\frac{1}{2}$ larger statistics. The finest equal mass computer that $\frac{L}{2011.12100}$ • Retuned physical m_l/m_s at $a = 0.15, 0.12$ and 0.09 (CalLat) fm with CalLat, 2011.12166
	- $\frac{1}{2}$ $\frac{1}{2}$ • Larger volume $128^3 \times 96$ at physical $m_l/m_s a = 0.09$ fm.
	- ζ a ζ and ζ and ζ . 0.06 and 0.00 fm, with lighter than the set of ζ • 6 ensembles at $a = 0.06$ and 0.09 fm with lighter-than-physical etrange quark mass determines with a ^{0.042} fm are used to determine the lightstrange quark mass.

Table from FNAL-MILC-TUMQCD, 1712.09262

• Smoothing of the original gauge field $U_{x,\mu}$ towards stationary points of the action S^f : Lüscher, 1006.4518

$$
\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu}S^f(t)\right\}V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu},
$$

where the flow action $S^f = S_{Wilson}$ or $S_{Symanzik}$.

• (We have not experimented with the Zeuthen flow.) Ramos, Sint, 1508.05552 • Smoothing of the original gauge field $U_{x,\mu}$ towards stationary points of the action S^f : Lüscher, 1006.4518

$$
\frac{dV_{x,\mu}}{dt}=-\left\{\partial_{x,\mu}S^f(t)\right\}V_{x,\mu},\quad V_{x,\mu}(t=0)=U_{x,\mu},
$$

where the flow action $S^f = S_{Wilson}$ or $S_{Symanzik}$.

- (We have not experimented with the Zeuthen flow.) Ramos, Sint, 1508.05552
- Scale setting:

$$
t^2 \langle S^o(t) \rangle \Big|_{t=t_0}^{\text{Lüscher, 1006.4518}}
$$
 or $\begin{bmatrix} d \\ t \frac{d}{dt} t^2 \langle S^o(t) \rangle \end{bmatrix}_{t=w_0^2}^{\text{Borsanyi et al., 1203.4469}}$

where the observable $S^o = S_{clover}$ or S_{Wilson} or $S_{Symanzik}$.

• In practice $Const = 0.3$.

Integration of the flow

• The flow equation evolves $V_{x,\mu}$ on a manifold

$$
\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu} S^f(t)\right\} V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu}
$$

and thus requires a manifold (aka geometric, aka structure preserving, aka Lie group) integrator.

• The flow equation evolves $V_{x,\mu}$ on a manifold

$$
\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu} S^f(t)\right\} V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu}
$$

and thus requires a manifold (aka geometric, aka structure preserving, aka Lie group) integrator.

- Two approaches for constructing Runge-Kutta manifold integrators:
	- with commutators, Munthe-Kaas, Appl. Num. Math. (1999)
		- Celledoni, Marthinsen, Owren, Future Gen. Com. Sys. (2003)
	- without commutators. Owren, J. Phys. A (2006)

• The flow equation evolves $V_{x,\mu}$ on a manifold

$$
\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu} S^f(t)\right\} V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu}
$$

and thus requires a manifold (aka geometric, aka structure preserving, aka Lie group) integrator.

- Two approaches for constructing Runge-Kutta manifold integrators:
	- with commutators, Munthe-Kaas, Appl. Num. Math. (1999)
	- without commutators. Celledoni, Marthinsen, Owren, Future Gen. Com. Sys. (2003) Owren, J. Phys. A (2006)
- Luscher's (3,3) (i.e. 3-stage 3-order) method is a member of a new class based on classical (!), so called, 2N-storage Runge-Kutta

integrators.

Bazavov, 2007.04225 Bazavov, Chuna, 2101.05320

Integration of the flow

- We use (6,4) 2N-storage method. Berland, Bogey, Bailly, Computers and Fluids (2006)
- For all ensembles we integrate the flow at two step sizes $\Delta t = 1/20$, 1/40 to fully control the global integration error.

• For a given combination of the dynamical action, flow action and the observable the leading discretization effects can be canceled at tree level:

$$
t^{2}S(t) \rightarrow t^{2}S_{corr}(t) = \frac{t^{2}S(t)}{1 + \sum_{m=1}^{4} C_{m}(a^{2m}/t^{m})}
$$

Fodor et al, 1406.0827

• Expansion in a^2/t

$$
\langle t^2 S(t) \rangle_a = \frac{3(N^2 - 1)g_0^2}{128\pi^2} (C(a^2/t) + O(g_0^2))
$$

The gradient flow

The gradient flow

Corrections for the relevant gauge-flow-observable combination \overline{C} stands for Wilson (c \overline{C} we measure. • Corrections for the relevant gauge-flow-observable combinations that

Action density vs flow time, $a = 0.12$ fm

Action density vs flow time, $a = 0.12$ fm

Action density vs flow time, $a = 0.12$ fm

Alexei Bazavov (MSU)

June 5, 2024 14

Action density vs flow time, $a = 0.09$ fm

Alexei Bazavov (MSU)

June 5, 2024 15

• Define the integration error as

$$
\Delta S \equiv \langle S^{o}(t, \Delta t = 1/40) \rangle \Big|_{t = w_0^2} - \langle S^{o}(t, \Delta t = 1/20) \rangle \Big|_{t = w_0^2}
$$

• Define the integration error as

$$
\Delta S \equiv \langle S^{o}(t, \Delta t = 1/40) \rangle \Big|_{t = w_0^2} - \langle S^{o}(t, \Delta t = 1/20) \rangle \Big|_{t = w_0^2}
$$

• The integration error on the physical mass ensembles at $a = 0.12$ fm (left) and $a = 0.042$ fm (right).

- Define the autocorrelation function for an observable \mathcal{O} : $C(n) \equiv \langle \mathcal{O}_0 \mathcal{O}_n \rangle - \langle \mathcal{O} \rangle^2$
- The integrated autocorrelation time

$$
\tau_{int} = 1 + 2 \sum_{n=1}^{N-1} \left(1 - \frac{n}{N} \right) \frac{C(n)}{C(0)}, \quad \sigma^2(\bar{O}) = \frac{\sigma^2(\bar{O})}{N} \tau_{int}
$$

- Define the autocorrelation function for an observable \mathcal{O} : $C(n) \equiv \langle \mathcal{O}_0 \mathcal{O}_n \rangle - \langle \mathcal{O} \rangle^2$
- The integrated autocorrelation time

$$
\tau_{int} = 1 + 2 \sum_{n=1}^{N-1} \left(1 - \frac{n}{N} \right) \frac{C(n)}{C(0)}, \qquad \sigma^2(\overline{\mathcal{O}}) = \frac{\sigma^2(\mathcal{O})}{N} \tau_{int}
$$

• Window method to estimate the integrated autocorrelation time

$$
\tau_{int}(n) = 1 + 2 \sum_{n'=1}^{n} \frac{C(n')}{C(0)}
$$

• If the autocorrelation function is a single exponential

$$
C(n) = C(0) \exp(-an)
$$
 then $\tau_{int}^1 = \frac{e^a + 1}{e^a - 1}$

Example: τ_{int} with the window method

- Mock data, single variable, Metropolis updating with progressively worse acceptance rate.
- Time series of 10,000,000 events.

Example: τ_{int} with the window method

- Mock data, single variable, Metropolis updating with progressively worse acceptance rate.
- Time series of 10,000,000 events.

June 5, 2024

Autocorrelations: $a = 0.12$ fm, physical pion

- MC time series: ~45,000 time units
- Observable: Clover action density at $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time $\tau_{int}(t_{MC})$ (right)
- Single-exponential fit: $\tau_{int}^1 = 55 \pm 3$

Autocorrelations: $a = 0.09$ fm, physical pion

- MC time series: ~20,000 time units
- Observable: Clover action density at $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time $\tau_{int}(t_{MC})$ (right)
- Single-exponential fit: $\tau_{int}^1 = 43 \pm 3$

Autocorrelations: $a = 0.06$ fm, 300 MeV pion

- MC time series: ~6,000 time units
- Observable: Clover action density at $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time $\tau_{int}(t_{MC})$ (right)
- Single-exponential fit: $\tau_{int}^1 = 122 \pm 31$

Autocorrelations: $a = 0.042$ fm, physical pion

- MC time series: ~6,000 time units
- Observable: Clover action density at $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time $\tau_{int}(t_{MC})$ (right)
- Single-exponential fit: $\tau_{int}^1 = 100 \pm 12$

Relative scale

- Statistical uncertainty:
	- Propagated with jackknife on binned data.
	- Bin size is extrapolated to infinity.

RHMC vs RHMD

• Histogram of the clover observable at $t = w_0^2$ on the

 $m_{\pi} = 200 \text{ MeV}$ $a = 0.06 \text{ fm}$ ensemble

• w_0/a in SSCc: 2.9557(34) RHMC vs 2.9520(47) RHMD

- Our plan:
	- $w_0 f_{p4s}$ on all ensembles (also as a crosscheck of 1503.02769).
	- $w_0 M_\Omega$ on physical mass ensembles.

• Crosscheck against the r_1 scale that has been recently determined on most of the HISQ ensembles. TUMQCD, 2206.03156

 W_0/r_1

- Crosscheck against the r_1 scale that has been recently determined on most of the HISQ ensembles. TUMQCD, 2206.03156
- Simple fits: linear and quadratic in a^2 .

 $w_0 f_\pi$

- The $w_0 f_\pi$ quantity on the physical mass $a = 0.042, 0.06, 0.09$ (original and retuned) and 0.12 (original and retuned) fm ensembles.
- No corrections of the mass mistuning yet. The magnitude of the effect seems comparable to the spread of the flow-observable schemes.

Omega baryon

- We use HISQ in the valence sector for computing M_{Ω} .
- General challenges:
	- Signal-to-noise for baryons deteriorates as, e.g. for the nucleon \sim exp{ – (M_N – 3 $M_{\pi}/2$)*t*}.
	- Excited states at early Euclidean times.
	- Staggered baryon spectroscopy.

Golterman, Smit, NPB 255 (1985) Kilcup, Sharpe, NPB 283 (1987) Bailey, hep-lat/0611023 Hughes, Lin, Meyer, 1912.00028

Staggered baryons

 $a \approx$

- Three interpolating operators for three Omega baryon tastes. rpolating operators *A***M**_{**reg**} Dmega baryon tas
- Coulomb gauge fixing. $a \approx a$
- Wall and Gaussian smeared sources, point and smeared sinks.
- May need GEVP for the final analysis.
- Perform Bayesian model averaging for all fits (different number of states and t_{min}). Jay, Neil, 2008.01069 Jay, Neil, 2008.01069

M_{Ω} : effective mass at *a* = 0.06 fm, physical mass

Note:

- Oscillating opposite parity state.
- Wall sources significantly help.

M_{Ω} : Fits at *a* = 0.12 fm

- Fitted Omega baryon mass as function of t_{min} .
- The horizontal line is the result of Bayesian model averaging.
- Dimmed points represent least favored fits.

M_{Ω} : Fits at *a* = 0.09 fm

- Fitted Omega baryon mass as function of t_{min} .
- The horizontal line is the result of Bayesian model averaging.
- Dimmed points represent least favored fits.

*M*_Q: Fits at $a = 0.06$ fm

- Fitted Omega baryon mass as function of t_{min} .
- The horizontal line is the result of Bayesian model averaging.
- Dimmed points represent least favored fits.

*M*_Ω: continuum extrapolation

- Continuum extrapolations:
	- $\alpha_s a^2$ (with and without $a = 0.15$ fm)

$$
\bullet \ \alpha_s a^2 + a^4
$$

Alexei Bazavov (MSU)

- Ongoing program of the gradient flow scales $\sqrt{t_0}/a$ and w_0/a computations for all MILC HISQ ensembles with two flow and three observable combinations.
- Ongoing computation of aM_Ω with HISQ on the physical-mass ensembles.
- Next steps:
	- Adding electromagnetic effects for M_{Ω} .
	- Full chiral-continuum analysis of $w_0 f_{p4s}$.