# Scale setting on the (2+1+1)-flavor HISQ ensembles: current status

Alexei Bazavov Michigan State University (on sabbatical at CERN)

with Claude Bernard, Carleton E. DeTar, Aida X. El-Khadra, Elvira Gamiz, Steven Gottlieb, Anthony V. Grebe, Urs M. Heller, William I. Jay, Andreas S. Kronfeld, Yin Lin

> Hadron physics and heavy quarks on the lattice, Trinity College, Dublin, June 4 — 7, 2024

- FLAG: gradient flow scales
- HISQ: action, ensembles
- Taste-breaking effects
- The gradient flow: definitions, corrections, integration
- Relative scale and the integrated autocorrelation time
- Absolute scale: a few examples  $-w_0/r_1, w_0 f_{\pi}, w_0 M_{\Omega}$
- Conclusion

#### FLAG 2023 update: gradient flow scales

|                |                   |             | lication<br>al cation<br>strutura Dolatus<br>o Vou cation | sical scale             |                     |                     |
|----------------|-------------------|-------------|-----------------------------------------------------------|-------------------------|---------------------|---------------------|
| Collaboration  | Ref.              | $N_{f}$     | Duri<br>Duri<br>Con<br>Con<br>Linii                       | AN OF                   | $\sqrt{t_0}$ [fm]   | $w_0 [{ m fm}]$     |
| ETM 21         | [43]              | 2+1+1       | A \star \star ★                                           | $f_{\pi}$               | 0.14436(61)         | 0.17383(63)         |
| CalLat 20A     | [115]             | 2 + 1 + 1   | A ★ ★ ★                                                   | $m_{\Omega}$            | 0.1422(14)          | 0.1709(11)          |
| BMW 20         | [119]             | 1 + 1 + 1 + | -1 A ★ ★ ★                                                | $m_\Omega$              |                     | 0.17236(29)(63)[70] |
| ETM $20$       | [1057]            | 2 + 1 + 1   | $C \star \star \star$                                     | $f_{\pi}$               |                     | 0.1706(18)          |
| MILC 15        | [116]             | 2 + 1 + 1   | A ★ ★ ★                                                   | $F_{p4s}(f_{\pi})^{\#}$ | 0.1416(+8/-5)       | 0.1714(+15/-12)     |
| HPQCD 13A      | [40]              | 2 + 1 + 1   | $A \star \circ \star$                                     | $f_{\pi}$               | 0.1420(8)           | 0.1715(9)           |
| RQCD 22        | [1058]            | 2+1         | $P \star \star \star$                                     | $m_{\Xi}$               | 0.1449(+7/-9)       |                     |
| CLS 21         | [1059]            | 2 + 1       | $C \star \star \star$                                     | $f_{\pi}, f_K$          | 0.1443(7)(13)       |                     |
| CLS 16         | [117]             | 2 + 1       | $A \circ \star \star$                                     | $f_{\pi}, f_{K}$        | 0.1467(14)(7)       |                     |
| QCDSF/UKQCD 15 | 5B [ <b>7</b> 18] | 2 + 1       | Ροοο                                                      | $m_P^{SU(3)}$           | 0.1511(22)(6)(5)(3) | 0.1808(23)(5)(6)(4) |
| RBC/UKQCD 14B  | [10]              | 2 + 1       | $A \star \star \star$                                     | $m_{\Omega}^-$          | 0.14389(81)         | 0.17250(91)         |
| HotQCD 14      | [120]             | 2 + 1       | A ★ ★ ★                                                   | $r_1(f_\pi)^\#$         |                     | 0.1749(14)          |
| BMW 12A        | [118]             | 2 + 1       | A ★ ★ ★                                                   | $m_\Omega$              | 0.1465(21)(13)      | 0.1755(18)(4)       |

#### FLAG 2023 update: gradient flow scales

|                |         |             | lication<br>al cation<br>strated status<br>tinuun abolatus<br>o von cation | sical scale             |                     |                     |
|----------------|---------|-------------|----------------------------------------------------------------------------|-------------------------|---------------------|---------------------|
| Collaboration  | Ref.    | $N_{f}$     | Dun<br>Dun<br>Con<br>Con<br>Thui                                           | NO NO                   | $\sqrt{t_0}$ [fm]   | $w_0 [{ m fm}]$     |
| ETM 21         | [43]    | 2+1+1       | A ★ ★ ★                                                                    | $f_{\pi}$               | 0.14436(61)         | 0.17383(63)         |
| CalLat 20A     | [115]   | 2 + 1 + 1   | A ★ ★ ★                                                                    | $m_{\Omega}$            | 0.1422(14)          | 0.1709(11)          |
| BMW 20         | [119]   | 1 + 1 + 1 + | -1 A ★ ★ ★                                                                 | $m_\Omega$              |                     | 0.17236(29)(63)[70] |
| ETM $20$       | [1057]  | 2 + 1 + 1   | $C \star \star \star$                                                      | $f_{\pi}$               |                     | 0.1706(18)          |
| MILC 15        | [116]   | 2 + 1 + 1   | A ★ ★ ★                                                                    | $F_{p4s}(f_{\pi})^{\#}$ | 0.1416(+8/-5)       | 0.1714(+15/-12)     |
| HPQCD 13A      | [40]    | 2 + 1 + 1   | $A \star \circ \star$                                                      | $f_{\pi}$               | 0.1420(8)           | 0.1715(9)           |
| RQCD 22        | [1058]  | 2+1         | $P \star \star \star$                                                      | $m_{\Xi}$               | 0.1449(+7/-9)       |                     |
| CLS 21         | [1059]  | 2 + 1       | $C \star \star \star$                                                      | $f_{\pi}, f_K$          | 0.1443(7)(13)       |                     |
| CLS 16         | [117]   | 2 + 1       | $A \circ \star \star$                                                      | $f_{\pi}, f_K$          | 0.1467(14)(7)       |                     |
| QCDSF/UKQCD 15 | B [718] | 2 + 1       | Ροοο                                                                       | $m_P^{SU(3)}$           | 0.1511(22)(6)(5)(3) | 0.1808(23)(5)(6)(4) |
| RBC/UKQCD 14B  | [10]    | 2 + 1       | A ★ ★ ★                                                                    | $m_{\Omega}$            | 0.14389(81)         | 0.17250(91)         |
| HotQCD $14$    | [120]   | 2 + 1       | A ★ ★ ★                                                                    | $r_1(f_\pi)^{\#}$       |                     | 0.1749(14)          |
| BMW 12A        | [118]   | 2+1         | A ★ ★ ★                                                                    | $m_{\Omega}$            | 0.1465(21)(13)      | 0.1755(18)(4)       |

#### FLAG 2023 update: gradient flow scales

|                      |          | dication<br>al cation<br>strated status<br>thun abolatus<br>o to v cation | Sice / Sice / Olection  |                     |                     |
|----------------------|----------|---------------------------------------------------------------------------|-------------------------|---------------------|---------------------|
| Collaboration Ref    | $N_f$    | Duri<br>Chin                                                              | NY NY                   | $\sqrt{t_0}$ [fm]   | $w_0 [{ m fm}]$     |
| ETM 21 [43           | ] 2+1+1  | A \star \star ★                                                           | $f_{\pi}$               | 0.14436(61)         | 0.17383(63)         |
| CalLat 20A SSCc [115 | ] 2+1+1  | A ★ ★ ★                                                                   | $m_\Omega$              | 0.1422(14)          | 0.1709(11)          |
| BMW 20 [119          | ] 1+1+1- | +1 A ★ ★ ★                                                                | $m_\Omega$              |                     | 0.17236(29)(63)[70] |
| ETM 20 [1057         | ] 2+1+1  | $C \star \star \star$                                                     | $f_\pi$                 |                     | 0.1706(18)          |
| MILC 15 SSCc [116    | ] 2+1+1  | A ★ ★ ★                                                                   | $F_{p4s}(f_{\pi})^{\#}$ | 0.1416(+8/-5)       | 0.1714(+15/-12)     |
| HPQCD 13A SWCo [40   | ] 2+1+1  | A ★ O ★                                                                   | $f_\pi$                 | 0.1420(8)           | 0.1715(9)           |
| RQCD 22 [1058        | ] 2+1    | P \star \star ★                                                           | $m_{\Xi}$               | 0.1449(+7/-9)       |                     |
| CLS 21 [1059         | ] 2+1    | $C \star \star \star$                                                     | $f_{\pi}, f_K$          | 0.1443(7)(13)       |                     |
| CLS 16 [117          | ] 2+1    | $A \circ \star \star$                                                     | $f_{\pi}, f_{K}$        | 0.1467(14)(7)       |                     |
| QCDSF/UKQCD 15B [718 | ] 2+1    | Ροοο                                                                      | $m_P^{SU(3)}$           | 0.1511(22)(6)(5)(3) | 0.1808(23)(5)(6)(4) |
| RBC/UKQCD 14B [10    | ] 2+1    | A ★ ★ ★                                                                   | $m_{\Omega}^{-}$        | 0.14389(81)         | 0.17250(91)         |
| HotQCD 14 $[120]$    | ] 2+1    | A ★ ★ ★                                                                   | $r_1(f_\pi)^{\#}$       |                     | 0.1749(14)          |
| BMW 12A [118         | ] 2+1    | $A \star \star \star$                                                     | $m_\Omega$              | 0.1465(21)(13)      | 0.1755(18)(4)       |

#### Lattice action

- One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, Phys. Lett. B (1985)
- The tadpole factor  $u_0$  is tuned from the plaquette.
- The Highly Improved Staggered Quark action.

Lepage, Mackenzie, hep-lat/9209022

HPQCD, hep-lat/0610092

## Lattice action

- One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, Phys. Lett. B (1985)
- The tadpole factor  $u_0$  is tuned from the plaquette.
- The Highly Improved Staggered Quark action.
- 2 degenerate light quarks, strange and charm at the physical masses.
- Lines of constant physics  $m_{\pi} \approx 135$ , 200 and 300 MeV.
- $m_{\pi}L > 4$  on most ensembles.

## Lattice action

- One-loop Symanzik tadpole-improved gauge action. Lüscher, Weisz, Phys. Lett. B (1985)
- The tadpole factor  $u_0$  is tuned from the plaquette.
- The Highly Improved Staggered Quark action. Lepage, Mackenzie, hep-lat/9209022 HPQCD, hep-lat/0610092
- 2 degenerate light quarks, strange and charm at the physical masses.
- Lines of constant physics  $m_{\pi} \approx 135$ , 200 and 300 MeV.
- $m_{\pi}L > 4$  on most ensembles.
- RHMC updating, on the finest ensembles RHMD Kennedy, Horvath, Sint, heplat/9809092 Clark, Kennedy, hep-lat/0608015

• Smearing suppresses the dominant discretization effects — from taste exchange interactions

• Smearing suppresses the dominant discretization effects — from taste exchange interactions



#### Pion mass taste splittings



MILC, 1212.4768

• HISQ vs asqtad pion taste splittings (left).

## Pion mass taste splittings



- HISQ vs asqtad pion taste splittings (left).
- Splitting pattern for different quark masses (right).

| $\approx a$ | Key                    | $\beta$ | $am'_l$   | $am'_s$            | $am'_c$ | $(L/a)^3 \times (T/a)$ | L    | $M_{\pi}$ | $M_{\pi}L$ | $N_{\rm conf}$ |
|-------------|------------------------|---------|-----------|--------------------|---------|------------------------|------|-----------|------------|----------------|
| (fm)        |                        |         |           |                    |         |                        | (fm) | (MeV)     |            |                |
| 0.15        | $m_s/5$                | 5.80    | 0.013     | 0.065              | 0.838   | $16^{3} \times 48$     | 2.45 | 305       | 3.8        | 1020           |
| 0.15        | $m_s/10$               | 5.80    | 0.0064    | 0.064              | 0.828   | $24^3 \times 48$       | 3.67 | 214       | 4.0        | 1000           |
| 0.15        | physical               | 5.80    | 0.00235   | 0.0647             | 0.831   | $32^3 \times 48$       | 4.89 | 131       | 3.3        | 1000           |
| 0.12        | $m_s/5$                | 6.00    | 0.0102    | 0.0509             | 0.635   | $24^3 \times 64$       | 2.93 | 305       | 4.5        | 1040           |
| 0.12        | unphysA                | 6.00    | 0.0102    | $0.03054^\dagger$  | 0.635   | $24^3 \times 64$       | 2.93 | 304       | 4.5        | 1020           |
| 0.12        | $\operatorname{small}$ | 6.00    | 0.00507   | 0.0507             | 0.628   | $24^3 \times 64$       | 2.93 | 218       | 3.2        | 1020           |
| 0.12        | $m_s/10$               | 6.00    | 0.00507   | 0.0507             | 0.628   | $32^3 \times 64$       | 3.91 | 217       | 4.3        | 1000           |
| 0.12        | large                  | 6.00    | 0.00507   | 0.0507             | 0.628   | $40^3 \times 64$       | 4.89 | 216       | 5.4        | 1028           |
| 0.12        | unphysB                | 6.00    | 0.01275   | $0.01275^\dagger$  | 0.640   | $24^3 \times 64$       | 2.93 | 337       | 5.0        | 1020           |
| 0.12        | unphysC                | 6.00    | 0.00507   | $0.0304^\dagger$   | 0.628   | $32^3 \times 64$       | 3.91 | 215       | 4.3        | 1020           |
| 0.12        | unphysD                | 6.00    | 0.00507   | $0.022815^\dagger$ | 0.628   | $32^3 \times 64$       | 3.91 | 214       | 4.2        | 1020           |
| 0.12        | unphysE                | 6.00    | 0.00507   | $0.012675^\dagger$ | 0.628   | $32^3 \times 64$       | 3.91 | 214       | 4.2        | 1020           |
| 0.12        | unphysF                | 6.00    | 0.00507   | $0.00507^\dagger$  | 0.628   | $32^3 \times 64$       | 3.91 | 213       | 4.2        | 1020           |
| 0.12        | unphysG                | 6.00    | 0.0088725 | $0.022815^\dagger$ | 0.628   | $32^3 \times 64$       | 3.91 | 282       | 5.6        | 1020           |
| 0.12        | physical               | 6.00    | 0.00184   | 0.0507             | 0.628   | $48^3 \times 64$       | 5.87 | 132       | 3.9        | 999            |
| 0.09        | $m_s/5$                | 6.30    | 0.0074    | 0.037              | 0.440   | $32^{3} \times 96$     | 2.81 | 316       | 4.5        | 1005           |
| 0.09        | $m_s/10$               | 6.30    | 0.00363   | 0.0363             | 0.430   | $48^{3} \times 96$     | 4.22 | 221       | 4.7        | 999            |
| 0.09        | physical               | 6.30    | 0.0012    | 0.0363             | 0.432   | $64^3 \times 96$       | 5.62 | 129       | 3.7        | 484            |

| $\approx a$ | Key                    | β    | $am'_l$   | $am'_s$             | $am'_c$ | $(L/a)^3 \times (T/a)$ | L    | $M_{\pi}$ | $M_{\pi}L$ | $N_{\rm conf}$ |          |
|-------------|------------------------|------|-----------|---------------------|---------|------------------------|------|-----------|------------|----------------|----------|
| (fm)        |                        |      |           |                     |         |                        | (fm) | (MeV)     |            |                |          |
| 0.15        | $m_s/5$                | 5.80 | 0.013     | 0.065               | 0.838   | $16^{3} \times 48$     | 2.45 | 305       | 3.8        | 1020           |          |
| 0.15        | $m_s/10$               | 5.80 | 0.0064    | 0.064               | 0.828   | $24^3 \times 48$       | 3.67 | 214       | 4.0        | 1000           |          |
| 0.15        | physical               | 5.80 | 0.00235   | 0.0647              | 0.831   | $32^3 \times 48$       | 4.89 | 131       | 3.3        | 1000           |          |
| 0.12        | $m_s/5$                | 6.00 | 0.0102    | 0.0509              | 0.635   | $24^3 \times 64$       | 2.93 | 305       | 4.5        | 1040           |          |
| 0.12        | unphysA                | 6.00 | 0.0102    | $0.03054^\dagger$   | 0.635   | $24^3 \times 64$       | 2.93 | 304       | 4.5        | 1020           |          |
| 0.12        | $\operatorname{small}$ | 6.00 | 0.00507   | 0.0507              | 0.628   | $24^3 \times 64$       | 2.93 | 218       | 3.2        | 1020           |          |
| 0.12        | $m_s/10$               | 6.00 | 0.00507   | 0.0507              | 0.628   | $32^3 \times 64$       | 3.91 | 217       | 4.3        | 1000           |          |
| 0.12        | large                  | 6.00 | 0.00507   | 0.0507              | 0.628   | $40^3 \times 64$       | 4.89 | 216       | 5.4        | 1028           |          |
| 0.12        | unphysB                | 6.00 | 0.01275   | $0.01275^\dagger$   | 0.640   | $24^3 \times 64$       | 2.93 | 337       | 5.0        | 1020           |          |
| 0.12        | unphysC                | 6.00 | 0.00507   | $0.0304^\dagger$    | 0.628   | $32^3 \times 64$       | 3.91 | 215       | 4.3        | 1020           |          |
| 0.12        | unphysD                | 6.00 | 0.00507   | $0.022815^\dagger$  | 0.628   | $32^3 \times 64$       | 3.91 | 214       | 4.2        | 1020           | 2013     |
| 0.12        | unphysE                | 6.00 | 0.00507   | $0.012675^\dagger$  | 0.628   | $32^3 \times 64$       | 3.91 | 214       | 4.2        | 1020           | 2010     |
| 0.12        | unphysF                | 6.00 | 0.00507   | $0.00507^{\dagger}$ | 0.628   | $32^3 \times 64$       | 3.91 | 213       | 4.2        | 1020           |          |
| 0.12        | unphysG                | 6.00 | 0.0088725 | $0.022815^\dagger$  | 0.628   | $32^3 \times 64$       | 3.91 | 282       | 5.6        | 1020           |          |
| 0.12        | physical               | 6.00 | 0.00184   | 0.0507              | 0.628   | $48^3 \times 64$       | 5.87 | 132       | 3.9        | 999            |          |
| 0.09        | $m_s/5$                | 6.30 | 0.0074    | 0.037               | 0.440   | $32^{3} \times 96$     | 2.81 | 316       | 4.5        | 1005           |          |
| 0.09        | $m_s/10$               | 6.30 | 0.00363   | 0.0363              | 0.430   | $48^3 \times 96$       | 4.22 | 221       | 4.7        | 999            |          |
| 0.09        | physical               | 6.30 | 0.0012    | 0.0363              | 0.432   | $64^3 \times 96$       | 5.62 | 129       | 3.7        | 484            | <b>↓</b> |

|       |          |      |          |         |        |                    |      |     |     |      | 2015  |
|-------|----------|------|----------|---------|--------|--------------------|------|-----|-----|------|-------|
| 0.06  | $m_s/5$  | 6.72 | 0.0048   | 0.024   | 0.286  | $48^3 \times 144$  | 2.72 | 329 | 4.5 | 1016 | '2020 |
| 0.06  | $m_s/10$ | 6.72 | 0.0024   | 0.024   | 0.286  | $64^3 \times 144$  | 3.62 | 234 | 4.3 | 572  |       |
| 0.06  | physical | 6.72 | 0.0008   | 0.022   | 0.260  | $96^3 \times 192$  | 5.44 | 135 | 3.7 | 842  |       |
| 0.042 | $m_s/5$  | 7.00 | 0.00316  | 0.0158  | 0.188  | $64^3 \times 192$  | 2.73 | 315 | 4.3 | 1167 |       |
| 0.042 | physical | 7.00 | 0.000569 | 0.01555 | 0.1827 | $144^3 \times 288$ | 6.13 | 134 | 4.2 | 420  |       |
| 0.03  | $m_s/5$  | 7.28 | 0.00223  | 0.01115 | 0.1316 | $96^3 \times 288$  | 3.09 | 309 | 4.8 | 724  |       |

|       |          |      |          |         |        |                     |      |     |     |      | 2015  |
|-------|----------|------|----------|---------|--------|---------------------|------|-----|-----|------|-------|
| 0.06  | $m_s/5$  | 6.72 | 0.0048   | 0.024   | 0.286  | $48^3 \times 144$   | 2.72 | 329 | 4.5 | 1016 | '2020 |
| 0.06  | $m_s/10$ | 6.72 | 0.0024   | 0.024   | 0.286  | $64^3 \times 144$   | 3.62 | 234 | 4.3 | 572  |       |
| 0.06  | physical | 6.72 | 0.0008   | 0.022   | 0.260  | $96^3 \times 192$   | 5.44 | 135 | 3.7 | 842  |       |
| 0.042 | $m_s/5$  | 7.00 | 0.00316  | 0.0158  | 0.188  | $64^3 \times 192$   | 2.73 | 315 | 4.3 | 1167 |       |
| 0.042 | physical | 7.00 | 0.000569 | 0.01555 | 0.1827 | $144^3 \times 288$  | 6.13 | 134 | 4.2 | 420  |       |
| 0.03  | $m_s/5$  | 7.28 | 0.00223  | 0.01115 | 0.1316 | $96^{3} \times 288$ | 3.09 | 309 | 4.8 | 724  |       |

- Additionally:
  - Retuned physical  $m_l/m_s$  at a = 0.15, 0.12 and 0.09 (CalLat) fm with CalLat, 2011.12166 CalLat, 2011.12166
  - Larger volume  $128^3 \times 96$  at physical  $m_l/m_s a = 0.09$  fm.
  - 6 ensembles at a = 0.06 and 0.09 fm with lighter-than-physical strange quark mass.

|       |          |      |          |         |        |                      |      |     |     |      | 2015  |
|-------|----------|------|----------|---------|--------|----------------------|------|-----|-----|------|-------|
| 0.06  | $m_s/5$  | 6.72 | 0.0048   | 0.024   | 0.286  | $48^3 \times 144$    | 2.72 | 329 | 4.5 | 1016 | '2020 |
| 0.06  | $m_s/10$ | 6.72 | 0.0024   | 0.024   | 0.286  | $64^3 \times 144$    | 3.62 | 234 | 4.3 | 572  |       |
| 0.06  | physical | 6.72 | 0.0008   | 0.022   | 0.260  | $96^3 \times 192$    | 5.44 | 135 | 3.7 | 842  |       |
| 0.042 | $m_s/5$  | 7.00 | 0.00316  | 0.0158  | 0.188  | $64^3 \times 192$    | 2.73 | 315 | 4.3 | 1167 |       |
| 0.042 | physical | 7.00 | 0.000569 | 0.01555 | 0.1827 | $144^3\!\times\!288$ | 6.13 | 134 | 4.2 | 420  | this  |
| 0.03  | $m_s/5$  | 7.28 | 0.00223  | 0.01115 | 0.1316 | $96^3 \times 288$    | 3.09 | 309 | 4.8 | 724  | work  |

- Additionally:
  - Returned physical  $m_l/m_s$  at a = 0.15, 0.12 and 0.09 (CalLat) fm with CalLat, 2011.12166 CalLat, 2011.12166
  - Larger volume  $128^3 \times 96$  at physical  $m_l/m_s a = 0.09$  fm.
  - 6 ensembles at a = 0.06 and 0.09 fm with lighter-than-physical strange quark mass.

• Smoothing of the original gauge field  $U_{x,\mu}$  towards stationary points of the action  $S^{f}$ : Lüscher, 1006.4518

$$\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu}S^{f}(t)\right\}V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu},$$

where the flow action  $S^f = S_{Wilson}$  or  $S_{Symanzik}$ .

• (We have not experimented with the Zeuthen flow.) Ramos, Sint, 1508.05552

• Smoothing of the original gauge field  $U_{x,\mu}$  towards stationary points of the action  $S^{f}$ : Lüscher, 1006.4518

$$\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu}S^{f}(t)\right\}V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu},$$

where the flow action  $S^f = S_{Wilson}$  or  $S_{Symanzik}$ .

- (We have not experimented with the Zeuthen flow.) Ramos, Sint, 1508.05552
- Scale setting:

$$t^2 \langle S^o(t) \rangle \Big|_{t=t_0}^{\text{Lüscher, 1006.4518}} \text{ or } \left[ t \frac{d}{dt} t^2 \langle S^o(t) \rangle \right]_{t=w_0^2}^{\text{Borsanyi et al., 1203.4469}} = Const,$$

where the observable  $S^o = S_{clover}$  or  $S_{Wilson}$  or  $S_{Symanzik}$ .

• In practice Const = 0.3.

#### Integration of the flow

• The flow equation evolves  $V_{x,\mu}$  on a manifold

$$\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu}S^{f}(t)\right\}V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu}$$

and thus requires a manifold (aka geometric, aka structure preserving, aka Lie group) integrator.

#### Integration of the flow

• The flow equation evolves  $V_{x,\mu}$  on a manifold

1 7 7

$$\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu}S^{f}(t)\right\}V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu}$$

and thus requires a manifold (aka geometric, aka structure preserving, aka Lie group) integrator.

- Two approaches for constructing Runge-Kutta manifold integrators:
  - with commutators, Munthe-Kaas, Appl. Num. Math. (1999)
    - Celledoni, Marthinsen, Owren, Future Gen. Com. Sys. (2003)
  - without commutators. Owren, J. Phys. A (2006)

• The flow equation evolves  $V_{x,\mu}$  on a manifold

$$\frac{dV_{x,\mu}}{dt} = -\left\{\partial_{x,\mu}S^{f}(t)\right\}V_{x,\mu}, \quad V_{x,\mu}(t=0) = U_{x,\mu}$$

and thus requires a manifold (aka geometric, aka structure preserving, aka Lie group) integrator.

- Two approaches for constructing Runge-Kutta manifold integrators:
  - with commutators, Munthe-Kaas, Appl. Num. Math. (1999)
  - without commutators. Celledoni, Marthinsen, Owren, Future Gen. Com. Sys. (2003) Owren, J. Phys. A (2006)
- Luscher's (3,3) (i.e. 3-stage 3-order) method is a member of a new class based on classical (!), so called, 2N-storage Runge-Kutta

integrators. <sup>Ba</sup>

1- -

Bazavov, 2007.04225 Bazavov, Chuna, 2101.05320

## Integration of the flow

- We use (6,4) 2N-storage method. Berland, Bogey, Bailly, Computers and Fluids (2006)
- For all ensembles we integrate the flow at two step sizes  $\Delta t = 1/20$ , 1/40 to fully control the global integration error.

## The gradient flow

• For a given combination of the dynamical action, flow action and the observable the leading discretization effects can be canceled at tree level:

 $\overline{}$ 

$$t^{2}S(t) \rightarrow t^{2}S_{corr}(t) = \frac{t^{2}S(t)}{1 + \sum_{m=1}^{4} C_{m}(a^{2m}/t^{m})}$$

Fodor et al, 1406.0827

• Expansion in  $a^2/t$ 

$$\langle t^2 S(t) \rangle_a = \frac{3(N^2 - 1)g_0^2}{128\pi^2} (C(a^2/t) + O(g_0^2))$$

## The gradient flow

|       | SWS            | WWC      | SSS         | SWW         | WSW             | WSC            |
|-------|----------------|----------|-------------|-------------|-----------------|----------------|
| $C_2$ | 1/72           | -1/24    | -1/24       | -1/24       | 5/72            | -7/72          |
| $C_4$ | 7/320          | -1/512   | 1/32        | 1/32        | 23/1280         | 19/2560        |
| $C_6$ | -8539/1935360  | -1/5120  | -283/27648  | -283/27648  | 2077/483840     | -2237/1935360  |
| $C_8$ | 76819/18579456 | -1/65536 | 3229/442368 | 3229/442368 | 16049/9289728   | 14419/74317824 |
|       | SSW            | WWW      | WSS         | WWS         | SWC             | SSC            |
| $C_2$ | -7/72          | 1/8      | 1/8         | 13/72       | -5/24           | -19/72         |
| $C_4$ | 35/768         | 3/128    | 3/128       | 13/384      | 167/2560        | 145/1536       |
| $C_6$ | -5131/276480   | 13/2048  | 13/2048     | 277/30720   | -58033/1935360  | -12871/276480  |
| $C_8$ | 10957/884736   | 77/32768 | 77/32768    | 323/98304   | 457033/24772608 | 52967/1769472  |

## The gradient flow

|       | SWS            | WWC      | SSS         | SWW         | WSW            | WSC            |
|-------|----------------|----------|-------------|-------------|----------------|----------------|
| $C_2$ | 1/72           | -1/24    | -1/24       | -1/24       | 5/72           | -7/72          |
| $C_4$ | 7/320          | -1/512   | 1/32        | 1/32        | 23/1280        | 19/2560        |
| $C_6$ | -8539/1935360  | -1/5120  | -283/27648  | -283/27648  | 2077/483840    | -2237/1935360  |
| $C_8$ | 76819/18579456 | -1/65536 | 3229/442368 | 3229/442368 | 16049/9289728  | 14419/74317824 |
|       | SSW            | WWW      | WSS         | WWS         | SWC            | SSC            |
| $C_2$ | -7/72          | 1/8      | 1/8         | 13/72       | -5/24          | -19/72         |
| $C_4$ | 35/768         | 3/128    | 3/128       | 13/384      | 167/2560       | 145/1536       |
| $C_6$ | -5131/276480   | 13/2048  | 13/2048     | 277/30720   | -58033/1935360 | -12871/276480  |
|       |                |          |             | ,           | ,              |                |

• Corrections for the relevant gauge-flow-observable combinations that we measure.

#### Action density vs flow time, a = 0.12 fm



#### Action density vs flow time, a = 0.12 fm



#### Action density vs flow time, a = 0.12 fm



Alexei Bazavov (MSU)

June 5, 2024

#### Action density vs flow time, a = 0.09 fm



Alexei Bazavov (MSU)

June 5, 2024

• Define the integration error as

$$\Delta S \equiv \left\langle S^{o}(t, \Delta t = 1/40) \right\rangle \Big|_{t=w_0^2} - \left\langle S^{o}(t, \Delta t = 1/20) \right\rangle \Big|_{t=w_0^2}$$

• Define the integration error as

$$\Delta S \equiv \left\langle S^{o}(t, \Delta t = 1/40) \right\rangle \Big|_{t=w_0^2} - \left\langle S^{o}(t, \Delta t = 1/20) \right\rangle \Big|_{t=w_0^2}$$



• The integration error on the physical mass ensembles at a = 0.12 fm (left) and a = 0.042 fm (right).

- Define the autocorrelation function for an observable  $\mathcal{O}$ :  $C(n) \equiv \langle \mathcal{O}_0 \mathcal{O}_n \rangle - \langle \mathcal{O} \rangle^2$
- The integrated autocorrelation time

$$\tau_{int} = 1 + 2\sum_{n=1}^{N-1} \left( 1 - \frac{n}{N} \right) \frac{C(n)}{C(0)}, \quad \sigma^2(\bar{\mathcal{O}}) = \frac{\sigma^2(\bar{\mathcal{O}})}{N} \tau_{int}$$

- Define the autocorrelation function for an observable  $\mathcal{O}$ :  $C(n) \equiv \langle \mathcal{O}_0 \mathcal{O}_n \rangle - \langle \mathcal{O} \rangle^2$
- The integrated autocorrelation time

$$\tau_{int} = 1 + 2\sum_{n=1}^{N-1} \left( 1 - \frac{n}{N} \right) \frac{C(n)}{C(0)}, \quad \sigma^2(\bar{\mathcal{O}}) = \frac{\sigma^2(\bar{\mathcal{O}})}{N} \tau_{int}$$

• Window method to estimate the integrated autocorrelation time

$$\tau_{int}(n) = 1 + 2\sum_{n'=1}^{n} \frac{C(n')}{C(0)}$$

• If the autocorrelation function is a single exponential

$$C(n) = C(0) \exp(-an)$$
 then  $\tau_{int}^1 = \frac{e^a + 1}{e^a - 1}$ 

## Example: $\tau_{int}$ with the window method

- Mock data, single variable, Metropolis updating with progressively worse acceptance rate.
- Time series of 10,000,000 events.

## Example: $\tau_{int}$ with the window method

- Mock data, single variable, Metropolis updating with progressively worse acceptance rate.
- Time series of 10,000,000 events.



## Autocorrelations: a = 0.12 fm, physical pion



- MC time series: ~45,000 time units
- Observable: Clover action density at  $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time  $\tau_{int}(t_{MC})$  (right)
- Single-exponential fit:  $\tau_{int}^1 = 55 \pm 3$

## Autocorrelations: a = 0.09 fm, physical pion



- MC time series:  $\sim 20,000$  time units
- Observable: Clover action density at  $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time  $\tau_{int}(t_{MC})$  (right)
- Single-exponential fit:  $\tau_{int}^1 = 43 \pm 3$

## Autocorrelations: a = 0.06 fm, 300 MeV pion

![](_page_38_Figure_1.jpeg)

- MC time series:  $\sim$ 6,000 time units
- Observable: Clover action density at  $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time  $\tau_{int}(t_{MC})$  (right)
- Single-exponential fit:  $\tau_{int}^1 = 122 \pm 31$

## Autocorrelations: a = 0.042 fm, physical pion

![](_page_39_Figure_1.jpeg)

- MC time series:  $\sim$ 6,000 time units
- Observable: Clover action density at  $t \sim w_0^2$
- Normalized autocorrelation function (left) and integrated autocorrelation time  $\tau_{int}(t_{MC})$  (right)
- Single-exponential fit:  $\tau_{int}^1 = 100 \pm 12$

#### Relative scale

- Statistical uncertainty:
  - Propagated with jackknife on binned data.
  - Bin size is extrapolated to infinity.

#### RHMC vs RHMD

![](_page_41_Figure_1.jpeg)

• Histogram of the clover observable at  $t = w_0^2$  on the

 $m_{\pi} = 200 \text{ MeV}a = 0.06 \text{ fm ensemble}$ 

• w<sub>0</sub>/a in SSCc: 2.9557(34) RHMC vs 2.9520(47) RHMD

- Our plan:
  - $w_0 f_{p4s}$  on all ensembles (also as a crosscheck of 1503.02769).
  - $w_0 M_{\Omega}$  on physical mass ensembles.

![](_page_43_Figure_0.jpeg)

• Crosscheck against the  $r_1$  scale that has been recently determined on most of the HISQ ensembles. TUMQCD, 2206.03156

![](_page_44_Figure_0.jpeg)

 $w_0/r_1$ 

- Crosscheck against the  $r_1$  scale that has been recently determined on most of the HISQ ensembles. TUMQCD, 2206.03156
- Simple fits: linear and quadratic in  $a^2$ .

 $W_0 f$ 

![](_page_45_Figure_1.jpeg)

- The  $w_0 f_{\pi}$  quantity on the physical mass a = 0.042, 0.06, 0.09(original and retuned) and 0.12 (original and retuned) fm ensembles.
- No corrections of the mass mistuning yet. The magnitude of the effect seems comparable to the spread of the flow-observable schemes.

## Omega baryon

- We use HISQ in the valence sector for computing  $M_{\Omega}$ .
- General challenges:
  - Signal-to-noise for baryons deteriorates as, e.g. for the nucleon  $\sim \exp\{-(M_N 3M_{\pi}/2)t\}.$
  - Excited states at early Euclidean times.
  - Staggered baryon spectroscopy.

Golterman, Smit, NPB 255 (1985) Kilcup, Sharpe, NPB 283 (1987) Bailey, hep-lat/0611023 Hughes, Lin, Meyer, 1912.00028

## Staggered baryons

 $a \approx$ 

- Three interpolating operators for three Omega baryon tastes.
- Coulomb gauge fixing.
- Wall and Gaussian smeared sources, point and smeared sinks.
- May need GEVP for the final analysis.
- Perform Bayesian model averaging for all fits (different number of states and  $t_{min}$ ). Jay, Neil, 2008.01069

![](_page_47_Figure_6.jpeg)

#### $M_{\Omega}$ : effective mass at a = 0.06 fm, physical mass

![](_page_48_Figure_1.jpeg)

#### Note:

- Oscillating opposite parity state.
- Wall sources significantly help.

## $M_{\Omega}$ : Fits at a = 0.12 fm

![](_page_49_Figure_1.jpeg)

- Fitted Omega baryon mass as function of  $t_{min}$ .
- The horizontal line is the result of Bayesian model averaging.
- Dimmed points represent least favored fits.

## $M_{\Omega}$ : Fits at a = 0.09 fm

![](_page_50_Figure_1.jpeg)

- Fitted Omega baryon mass as function of  $t_{min}$ .
- The horizontal line is the result of Bayesian model averaging.
- Dimmed points represent least favored fits.

## $M_{\Omega}$ : Fits at a = 0.06 fm

![](_page_51_Figure_1.jpeg)

- Fitted Omega baryon mass as function of  $t_{min}$ .
- The horizontal line is the result of Bayesian model averaging.
- Dimmed points represent least favored fits.

### $M_{\Omega}$ : continuum extrapolation

![](_page_52_Figure_1.jpeg)

- Continuum extrapolations:
  - $\alpha_s a^2$  (with and without a = 0.15 fm)

• 
$$\alpha_s a^2 + a^4$$

- Ongoing program of the gradient flow scales  $\sqrt{t_0}/a$  and  $w_0/a$  computations for all MILC HISQ ensembles with two flow and three observable combinations.
- Ongoing computation of  $aM_{\Omega}$  with HISQ on the physical-mass ensembles.
- Next steps:
  - Adding electromagnetic effects for  $M_{\Omega}$ .
  - Full chiral-continuum analysis of  $w_0 f_{p4s}$ .