

**FSP** LHCb Erforschung von Universum und Materie



# **Exotic Hadrons**

#### **Experimental and Theoretical overview**

Misha Mikhasenko Ruhr University Bochum

Hadronic physics and heavy quarks on the lattice Hamilton Mathematics Institute, Ireland, 06/06/202





#### Introduction

1.String breaking

2. Mixture with the threshold

3. Different Hadrons and Nuclei



### **Effect of string breaking**

#### The quenched potential (no breaking)

#### The unquenched potential (breaking)







### QM states and thresholds

Most of hadrons are not isolated: near hadron-hadron threshold, a = a = a = a = a = a

e.g.  $q\bar{q} \rightarrow (q\bar{q})(q\bar{q})$ ,

hadronic states are coupled to hadronhadron continuum

Molecule component: a part of the state wave function is  $(q\bar{q})(q\bar{q})$ 

### Possible configurations of hadrons

**Conventional Quark Model:**  $(q\bar{q}, qqq)$ **Bigger Quark Model**  $(q\bar{q}q\bar{q}, qqqq\bar{q}, ...)$ 



 $(\bar{u})$ 

Conventional Hadronic Molecules = Nuclei: (qqq)(qqq)Heavy-Flavor Hadronic Molecules: (Qqq)(Qqq),  $(Q\bar{q})(Qqq)$ , ... Admixed Molecules:  $q\bar{q} \rightarrow (q\bar{q})(q\bar{q})$ 







#### **Experimental techniques**

1.Select clean data sample

2. Identify hadronic resonances

3. Pole mass and width (reaction-theory analysis)

3. Spin and parity (angular analysis)

 $e^+e^-$  machines: Belle, BESIII, BaBar pp production: LHCb , ALICE, CMS, ATLAS b-decays: LHCb, BaBar pip and leptoproduction: COMPASS photoproduction: GlueX, Crystal Barrel  $p\bar{p}$  annihilation: Crystal Ball, (PANDA)



### **Angular Analysis**



**Correlations in angular distributions give access to particle spins** 

- model-independent rotational properties

Wang et al., 2020 Mikhasenko et al., 2020 [Lie et al, 2022]]  $A_{\lambda_0,\lambda_1,\lambda_2}^{(23)} = \underbrace{\bigotimes(\phi_i,\theta_i)}_{0\to X,1} \times \underbrace{\bigotimes(\phi_i',\theta_i')}_{X\to 2,3} \times \underbrace{\bigotimes(\phi_i'',\theta_i'')}_{\text{spin align.}}$  unphysical inhomogenity • spin 1/2:  $A(\pi) \neq A(-\pi)$ • range of  $\phi$  matters  $[-\pi,\pi]$  vs  $[0,2\pi]$ Recent simplification of amplitude construction approach [JPAC, PRD 101, 034033 (2020)]  $A_{\lambda_0,\lambda_1,\lambda_2} = \sum_{\nu} D_{\lambda_0,\nu}^{1/2*}(\alpha,\beta,\gamma) \underbrace{O_{\lambda_1,\lambda_2}^{\nu}(m_{12}^2,m_{23}^2)}_{O^{(12)}+O^{(23)}+O^{(31)}}$  $O^{(23)}_{
u,\lambda_1,\lambda_2}(m^2_{12},m^2_{23}) = \bigotimes_{0 o X,1} imes \bigotimes_{X o 2,3} imes \bigotimes_{ ext{spin alig}} imes$ • correct  $\phi$  dependence by construction



[Jacob-Wick] [Chung] [Chen and Ping, 2017]

### Dynamic modeling



Cascade-reaction approach ("isobar model")

#### **Due to cross channels** angular distributions and dynamic lineshapes are **mixed**



#### Hadronic amplitude

Probability density function is a square of amplitude summed over spin projections

$$I(s) = \sum_{\text{spin}} |A(s)|^2$$

A(s) is a complex function of energy,  $s = E^2$ Example of a resonance amplitude

$$A(s) = \frac{N(s)}{m^2 - s - ig^2\rho(s)}$$

N(s) is reaction dependent (B-decays / e+e-), denominator is universal Imaginary part is something we control well:

1. Decay threshold is far away / unknown  $ig^2\rho(s) = m\Gamma$  (const)

2. The only relevant continuum to consider  $ig^2\rho(s)$ =Breit-Wigner=

3. there are multiple channels to consider  $i(g_1^2\rho_1 + g_2^2\rho_2 + \cdots)$ 

4. Multiple channels, multiple resonances



### **Analytic continuation – resonance poles**

- Amplitude A is a complex function of E = x+iy
- Im(1/A) ~ phase sp. ~ sqrt(kin. energy)
- sqrt branch point forms two sheets



Im A (x + iy)

100

Physical sheet

First sheet



Consistent with the charmonium state that shows up next to **hadron-hadron threshold** exhibit molecular properties

QM core, molecular appearance

Seen in e+e- by Belle, BESIII, BaBar Seen in pp by LHCb, CMS, ALICE. Seem in b-decays by LHCb, BaBar, Might be seen in leptoproduction by COMPASS



# $\chi_{c1}(3872)$ is right at the $D^0 D^{*0}$ threshold

Prompt production (pp  $\rightarrow \chi_{c1} X$ )

From B-decays  $(B^+ \rightarrow \chi_{c1}K^+)$ 





### $\chi_{c1}(3872)$ lineshape and parameters

Flatte lineshape

$$A(s) = \frac{1}{m^2 - s - ig^2 \rho_{D^*\overline{D}} - im\Gamma_0}$$

General agreement on the pole parameters between BESIII, Belle, LHCb:

- Analysis of 
$$J/\psi \pi^+\pi^-$$
 by LHCb [PRD102 (2020) 092005]

- BESIII combined analysis of 
$$J/\psi \pi^+\pi^- \& D^{0*}\overline{D}^0$$
  
[hep-ex: 2309.01502]

$$\begin{bmatrix} \Gamma_{\text{known}}/\Gamma_{\pi^+\pi^- J/\psi} & \beta & 2.8\\ \Gamma_{\text{unknown}}/\Gamma_{\pi^+\pi^- J/\psi} & \alpha & 8\\ \end{bmatrix}$$
 [C. Li and C.-Z. Yuan, PRD 100, 094003 (2019)





# Doubly heavy tetraquark $T_{QQ}$

Look like regular QM-tetraquark state similar to  $\Lambda_b^0$  baryon

 $T_{cc}^+$ : shows up next to hadron-hadron threshold exhibit molecular properties

 $T_{bb}^-$ : decays weakly, can flies meters

 $T_{cb}^0$ : likely to exist

Only seen in pp by LHCb



# Tetraquark T<sup>-</sup><sub>bb</sub>



Firmly established in pheno, e.g.

[Ader, Richard, PRD 25, 2370 (1982)]

lattice calculations, e.g.

[Francis et al., PRL 118, 142001 (2017)]

**Below open-flavor threshold** 

Stable wrt strong interaction

Similar to a "regular" QM hadron

bb are close together, and

are in color-anti-triplet

Not yet seem experimentally; won't be soon Anticipated for 50y

#### [courtesy Renwick Hudspith]



#### [Janc, Rosina, FBS35 (2004) 175-196]





#### [Bicudo et al., PRD103, 114506 (2021)]

### Continuum for $T_{hh}^{-}$

**Born-Oppenheimer approach** with a lattice potential

**Diquark-diquark configuration vs** meson-meson configurations

Tetraquark component dominants at smaller r, while at the high r tails, the molecular component is present.

meson-meson is surprisingly important





#### Doubly-charm tetraquark $T_{cc}^+$ right at the $D^0D^{*+}$ threshold



Peak in  $D^0 D^0 \pi^+$  just below  $D^{*+} D^0$  threshold

Extremely narrow, ~300keV

(resolution)

Needs to be treated as

three-body effect





### Studies of the doubly-charm tetraquark $T_{cc}^+$



QN: isoscalar (I = 0), axial ( $J^{PC} = 1^{++}$ )

Coupled channel model



Yields good agreement with the data

RUB

# Analytic continuation and $T_{cc}^+$ pole parameters

Yields pole parameters:

Sinding energy:  $-360 \pm 40^{+4}_{-0}$  keV (well determined by the data)

• Width:  $48 \pm 2^{+0}_{-14}$  keV (driven by the model:  $D^{*+}$  width, pion-exchange)

> [Baru et al., ] [MM, Effective range, hep-ph:] [QWG talk, ] [Albaladejo,]





# $T_{cc}^+$ on lattice

Physical sheet

0.96

Re(m<sup>2</sup>)

#### Seen on lattice by several groups

[Yan Lyu et al., PRL131, 161901 (2023)] [Padmanath-Prelovsek, PRL129, 032002 (2022)] [S. Chen et al., PLB833, 137391 (2022)]



#### Transition: **bound state** → **virtual state** → **resonance.**

No fundamental difference. The state is mostly **molecular** in vicinity of the threshold



0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

0.92

0.94

lm(m²)

0.98



Show up next to hadron-hadron threshold unclear if consistent with the QM-tetraquark state that

QM core(?), molecular appearance(!)

Only seem in b-decays by LHCb





#### Pentaquarks $P_{c\bar{c}}^+$



Narrow resonance states near threshold of  $\Sigma_c^{+(*)}\overline{D}^{0(*)}$ 

Large background from  $pK^$ scattering  $-\Lambda$  resonances



### Challenges for amplitude analysis (work in progress)



- Interfering background
- Largely unknown, now well constrained

# Might benefit from knowledge on $\Lambda$ spectrum from $p K^-$ scattering data is needed





#### Strange Partner\*

Prominent peak near  $\Xi_c \overline{D}$  threshold  $\diamond$  0.8±0.7 MeV above  $\Xi_c^+ D^ \diamond$  2.9±0.7 MeV above  $\Xi_c^0 \overline{D}^0$ 

 $J^P = 1/2^-$  is preferred

Aligned with  $\Xi_c^+ D^-$  molecule



### Fully heavy tetraquarks, $QQ\overline{Q}\overline{Q}$

Unclear, many thresholds

Lattice QCD, pheno: no hints for binding for  $b\overline{b}b\overline{b}$ 

Seen in pp by LHCb, CMS, ATLAS



### $cc\overline{c}\overline{c}$ from double $J/\psi$ structures

[PRL 132 (2024) 11, 111901]



- Rapid raise at the threshold followed by the three peaks.
- Clear dips at 6.8 GeV, and 7.2 GeV
- Only simplistic modeling with unknown JP



# **bbbb** from ATLAS

ATLAS observed a signal in  $\gamma \mu^+ \mu^-$ 

150

100

Local significance >50 Mass is about 18 GeV

Stable with respect to modifications of cuts trigger conditions.

Disappears with 13TeV data (sadly)



#### Many exotic states. Particle zoo v2.0



Misha Mikhasenko "Exotic States" RUB

#### **Open questions on exotic hadrons**

#### Having significant molecular contribution for hadronic state is fine.

- We do not understand how the continuum acts. Why it sets some states right on the threshold?  $[\chi_{c1}(3872) \rightarrow D^0 D^{*0}, T_{cc}^+ \rightarrow D^0 D^{*0}]$
- Does one always need a genuine QCD seed? (extra numerous states wrt QM) From nuclear physics – "No" (plenty of atoms and isotops) P<sup>+</sup><sub>cc̄</sub>, T<sup>0</sup><sub>ccc̄c̄</sub>?
- Extra-numerous states: hybrids, glueballs?

- Advanced amplitude analysis
- Collaboration of theory & experiment
  - Synergy between different subfields is critical to progress



#### Hybrids in meson spectrum





[S. Ryan et al., JHEP 02 (2021) 214]



RUB

#### Hybrids

# are extra numerous states in charmonium spectrum?

| Multiplet | $J^{PC}$                                   | $M_{c\bar{c}g}$ | $M_{b\bar{b}g}$ |
|-----------|--------------------------------------------|-----------------|-----------------|
| $H_1$     |                                            | 4155            | 10786           |
| $H_1'$    | $\left  \{1^{}, (0, 1, 2)^{-+} \} \right $ | 4507            | 10976           |
| $H_1''$   |                                            | 4812            | 11172           |
| $H_2$     |                                            | 4286            | 10846           |
| $H_2'$    | $ \{1^{++}, (0, 1, 2)^{+-}\} $             | 4667            | 11060           |
| $H_2''$   |                                            | 5035            | 11270           |
| $H_3$     |                                            | 4590            | 11065           |
| $H'_3$    | $\{0^{++}, 1^{+-}\}$                       | 5054            | 11352           |
| $H_3''$   |                                            | 5473            | 11616           |
| $H_4$     | $\{2^{++}, (1, 2, 3)^{+-}\}$               | 4367            | 10897           |
| $H_5$     | $\{2^{}, (1, 2, 3)^{-+}\}$                 | 4476            | 10948           |





### Hybrids in the light meson spectrum



Lattice QCD calculations for light meson sector are the most advanced  $\Gamma_i / \mathrm{MeV}$  $\sum_i \Gamma_i$ 600  $b_1\pi$ 400 - Hybrid multiplets in **GEVP** calculations 200 30  $f_1(1285)\pi$ - properties of the lightest hybrid meson 20  $\rho\pi$ using scattering  $\eta'\pi$ 10  $f_1(1420)\pi$ amplitudes  $K^*\overline{K}$ 1500  $m_R \,/\,{
m MeV}$ 

[Woss et.al., 2020]

![](_page_31_Picture_4.jpeg)

### Hybrid mesons from COMPASS

Exotic pi1(1600) with JPC = 1-+

- Established in eta'pi
- Consistently described in eta pi
- Found in rho pi [sophisticated 3pi PWA]
- is being discovered in b1 pi [sophisticated 2piomega PWA]

![](_page_32_Figure_6.jpeg)

![](_page_32_Picture_7.jpeg)