Exotic hadrons with heavy quarks - from exploratory calculations to reliable predictions

Daniel Mohler

Technische Universität Darmstadt

Dublin, 6. June, 2024

A 34 b

315

Outline

Introduction and Motivation

2 Positive-parity B_S states

3 Doubly-heavy tetraquarks

4 Conclusions and Outlook

What to call an exotic state in OCD?

- Textbook: Quark-antiquark mesons and 3-quark baryons
- Historically, multiquark states and hybrids (made of quark and gluons) already suggested by Gell-Mann in addition
- We are now seeing some explicitly *exotic* states in particular with heavy quarks
- Various possible structures: regular mesons/baryons; molecules; tetraquarks/pentaquarks; hybrid hadrons; glueballs; Di-Baryons
- For the purpose of this talk:

I will also consider states with quantum numbers allowed by quark-antiquark states but unexpected properties as exotic

Exotic D_s and B_s candidates

Established s and p-wave hadrons:

 $D_{s} (J^{P} = 0^{-}) \text{ and } D_{s}^{*} (1^{-})$ $D_{s0}^{*}(2317) (0^{+}), D_{s1}(2460) (1^{+}),$ $D_{s1}(2536) (1^{+}), D_{s2}^{*}(2573) (2^{+})$ $B_{s} (J^{P} = 0^{-}) \text{ and } B_{s}^{*} (1^{-})$ $P_{s1}(5830) (1^{+}), B_{s2}^{*}(5840) (2^{+})$

- Corresponding $D_0^*(2400)$ and $D_1(2430)$ are broad resonances
- Perceived peculiarity: $M_{c\bar{s}} \approx M_{c\bar{d}}$ (an old dispute; likely not the case)
- Additional exotic states are expected (in the sextet representation)

See for example Kolomeitsev, Lutz, PLB 582, 39 (2004)

• B_s cousins of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ not (yet) seen in experiment

Daniel Mohler (TU Darmstadt)

Tetraquarks - the T_{bb}

The $I(J^P) = 0(1^+) u d\bar{b}\bar{b}$ tetraquark, T_{bb} , is the most concrete pure-tetraquark candidate phenomenologically and from the lattice in terms of being deeply-bound and strong-interaction-stable.

Cousin of the T_{cc} but likely has quite different physics,

 T_{bb} bound by ≈ 100 MeV, T_{cc} by 360 KeV

 T_{bb} often described by the diquark picture:

- "Good" (attractive) light diquark $(u^T C \gamma_5 d)$ lighter diquark increases binding
- Color-Coulomb heavy antidiquark $(\bar{b}C\gamma_i\bar{b}^T)$ deeper binding as heavy mass gets heavier

No Wick-contractions with annihilation \rightarrow easy to compute on the lattice!

Determining the finite-volume spectra

• In practical calculations $\bar{q}q$ and qqq interpolators couple very weakly to multi-hadron states

McNeile & Michael, Phys. Lett. B 556, 177 (2003); Engel et al. PRD 82, 034505 (2010); Bulava et al. PRD 82, 014507(2010); Dudek et al. PRD 82, 034508(2010);

• Similar observations in string breaking studies

Pennanen & Michael hep-lat/0001015; Bernard et al. PRD 64 074509 2001;

• This (often) necessitates the inclusion of hadron-hadron interpolators

- We also know: Energy levels \neq resonance masses Naïve expectation: Correct up to $\mathcal{O}(\Gamma_R(m_\pi))$
- Was once upon a rime good enough for heavy pion masses where one would deal with bound states or very narrow resonances.

Progress from an old idea: Lüscher's finite-volume method

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Basic observation: Finite-volume, multi-particle energies are shifted with regard to the free energy levels due to the interaction

$$E = E(p_1) + E(p_2) + \Delta_E$$

- Energy shifts encode scattering amplitude(s)
- Original method: Elastic scattering in the rest-frame in multiple spatial volumes L^3
- Coupled 2-hadron channels well understood
- 2 ↔ 1 and 2 ↔ 2 transitions well understood (example ππ → πγ*)
- Significant progress for 3-particle scattering

Challenges

- Hierarchy of difficulties
 - Meson systems are simpler than baryons (exponentially degrading signal to noise)
 - For deeply bound states Lüscher/scattering studies not strictly necessary
 - Cost of correlation functions much larger for systems with baryons
 - Complicated scattering amplitudes need more data (volumes, frames) single two-hadron channel; coupled two-hadron channels; three-hadron scattering
- Hierarchy of projects:
 - Proof of principle
 - Explore quark mass dependence
 - Full spectroscopy calculation including continuum limit
 - Structure observables (transitions, form factors, ...)
- Two examples:
 - Low-lying positive-parity B_S mesons Most systematics can be addressed!
 - Doubly-heavy tetraquark states (see also Travis Whyte on Friday!) (illustrate different stages of progress/difficulties)

Daniel Mohler (TU Darmstadt)

CLS gauge field ensembles

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

plot style by Jakob Simeth, RQCD

Important lattice systematics from

- Taking the *continuum limit*: $a(g,m) \rightarrow 0$
- Taking the *infinite volume limit*: $L \to \infty$
- Calculation at (or extrapolation to) physical quark masses

Daniel Mohler (TU Darmstadt)

CLS gauge field ensembles

Bruno et al. JHEP 1502 043 (2015); Bali et al. PRD 94 074501 (2016)

Important lattice systematics from

- Taking the *continuum limit*: a(g, r)
- Want to exploit (power law) finite volume effects (keeping exponential effects small)
- Calculation at (or extrapolation to) physical quark masses

Daniel Mohler (TU Darmstadt)

plot style by Jakob Simeth, RQCD

$$a(g,m) \to 0$$

NRQCD action

Typical tadpole-improved NRQCD action (here we will use n=4)

Lepage et al., PRD 46, 4052-4067 (1992)

$$H_{0} = -\frac{1}{2aM_{0}}\Delta^{2},$$

$$H_{I} = \left(-c_{1}\frac{1}{8(aM_{0})^{2}} - c_{6}\frac{1}{16n(aM_{0})^{2}}\right)\left(\Delta^{2}\right)^{2} + c_{2}\frac{i}{8(aM_{0})^{2}}\left(\tilde{\Delta}\cdot\tilde{E} - \tilde{E}\cdot\tilde{\Delta}\right) + c_{5}\frac{\Delta^{4}}{24(aM_{0})}$$

$$H_{D} = -c_{3}\frac{1}{8(aM_{0})^{2}}\sigma\cdot\left(\tilde{\Delta}\times\tilde{E} - \tilde{E}\times\tilde{\Delta}\right) - c_{4}\frac{1}{8(aM_{0})}\sigma\cdot\tilde{B}$$

$$\delta H = H_{I} + H_{D}.$$

Propagators generated through symmetric evolution equation

$$G(x,t+1) = \left(1 - \frac{\delta H}{2}\right) \left(1 - \frac{H_0}{2n}\right)^n \tilde{U}_t(x,t_0)^{\dagger} \left(1 - \frac{H_0}{2n}\right)^n \left(1 - \frac{\delta H}{2}\right) G(x,t).$$

• We also tune a $\mathcal{O}(v^6)$ action with tree-level coefficients for the higher order terms

Daniel Mohler (TU Darmstadt)

Neural net (RHQ and) NRQCD tuning and setup

R.J. Hudspith, DM, PRD 106, 034508 (2022) R.J. Hudspith, DM, PRD 107, 114510 (2023)

- Calculate runs with a random distribution for the action parameters
- Let the neural network make parameter predictions
- Due to additive mass we must only consider splittings → we subtract the η_B from all states
- Perform tuning at SU(3)_f-symmetric point
- Gauge-fixed wall sources
- Tuning precision is about 1%

Figure: Schematic picture of our NRQCD setup

A = A = A = A = A = A = A

Input used for the tuning

Consider only quark-line connected parts of simple meson operators

 $O(x) = (\bar{b}\Gamma(x)b)(x),$

State	PDG mass [GeV]	$\Gamma(x)$
$\eta_b(1S)$	9.3987(20)	γ_5
$\Upsilon(1S)$	9.4603(3)	γ_i
$\chi_{b0}(1P)$	9.8594(5)	$\sigma \cdot \Delta$
$\chi_{b1}(1P)$	9.8928(4)	$\sigma_j \Delta_i - \sigma_i \Delta_j \ (i \neq j)$
$\chi_{b2}(1P)$	9.9122(4)	$\sigma_j \Delta_i + \sigma_i \Delta_j \ (i \neq j)$
$h_b(1P)$	9.8993(8)	Δ_i

Table: Table of lattice operators used and their continuum analogs.

NRQCD Neural Net Tuning: Stable s- and p-wave bottomonia

- Higher S- and P-wave states serve as a check whether our tuning leads to reasonable results
- Main results from the lattice spacing of U103; H200 used to estimate systematics

Daniel Mohler (TU Darmstadt)

Dublin, 6. June, 2024 13/3

Outline

Introduction and Motivation

2 Positive-parity B_S states

3 Doubly-heavy tetraquarks

4 Conclusions and Outlook

B_s : Chiral – infinite volume extrapolation

- We explore the previously predicted $J^P = 0^+$ and 1^+ bound states
- Mainly the CLS TrM = const trajectory and 2 $m_S = const$ ensembles

Combined extrapolation:

$$\Delta_{B_{s0}^*/B_{s1}}(\Delta\phi_2, m_K L, a) = \Delta_{B_{s0}^*/B_{s1}}(0, \infty, a) \left(1 + A\Delta\phi_2 + Be^{-m_K L}\right)$$
$$\Delta\phi_2 = \phi_2^{\text{Lat}} - \phi_2^{\text{Phys}} \quad ; \qquad \phi_2 = 8t_0 m_\pi^2$$

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Dublin, 6. June, 2024

Systematic uncertainties and final result

Resulting binding energies:

$$\begin{split} &\Delta_{B_{s0}^*}(0,\infty,0) = -75.4(3.0)_{\text{Stat.}}(13.7)_{\text{a}} \text{ [MeV]}, \\ &\Delta_{B_{s1}}(0,\infty,0) = -78.7(3.7)_{\text{Stat.}}(13.4)_{\text{a}} \text{ [MeV]}. \end{split}$$

- Small uncertainty from statistics + combined extrapolation
- Largest systematics from usage of NRQCD/discretization effects
- Central value shifted by applying half the mass difference between H200 and U103
- All other explored uncertainties (finite volume shapes, modified quark-mass dependence, etc.) small

A = A = A = A = A = A

Comparison to the literature

• Results agree well with models based on unitarized χPT

Improved uncertainty estimate over older Lattice calculations

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

ъ

Outline

Introduction and Motivation

2 Positive-parity B_S states

Oubly-heavy tetraquarks

4 Conclusions and Outlook

A high-statistics problem

Figure: Effective mass of the T_{bb} correlator from ensemble U103 using 28,000 propagators.

Wall-point data still not at plateau as it loses precision. Wall-sm shows stable plateau for long range of t. P.O.F plateaus fastest but is noisiest. Can easily fit a single exponential to Wall-point data and get too deep binding!

T_{bb} – Basis and effective masses (on N101)

$$D = (u_a{}^T C \gamma_5 d_b)(\bar{b}_a C \gamma_i \bar{b}_b^T), \quad E = (u_a{}^T C \gamma_t \gamma_5 d_b)(\bar{b}_a C \gamma_i \gamma_t \bar{b}_b^T),$$

$$M = (\bar{b}\gamma_5 u)(\bar{b}\gamma_i d) - [u \leftrightarrow d], \quad N = (\bar{b}Iu)(\bar{b}\gamma_5 \gamma_i d) - [u \leftrightarrow d].$$

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Dublin, 6. June, 2024

Combined mass and volume extrapolations

• Ansatz for a deeply-bound state:

$$\Delta_{ud\bar{b}\bar{b}}(\Delta\phi_2, m_{\pi}L, a) = \Delta_{ud\bar{b}\bar{b}}(0, \infty, a)(1 + A\Delta\phi_2 + Be^{-m_{\pi}L}).$$

• Strong $e^{-m_{\pi}L}$ volume effects and deeper binding at lighter pion mass.

Daniel Mohler (TU Darmstadt)

Varying the NRQCD tuning

Figure: Alternative tuning strategies with/without B-mesons and higher-order terms (left). Clear correlation of the $B^* - B$ splitting with the T_{bb} bincing. (right)

- Simultaneously reproducing both hyperfine splittings seems impossible
- Tree-level performs poor; For our strategies higher order terms help.
- Shallower T_{bb} binding, with increased $B^* B$ splitting.

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

T_{bb} – quantifying systematics

 $\Delta_{ud\bar{b}\bar{b}}(0,\infty,0) = -112.0(2.7)_{\text{Stat.}}(4.5)_{\chi}(11.6)_a(3.3)_{B^*-B}$

- (..)_a uncertainty from comparison of the results for two lattice spacings (H200 vs. U103)
- Both leading systematic uncertainties come from discretization effects/ the use of Lattice NRQCD!

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Overview of Lattice $I(J^P) = 0(1^+) T_{bb}$ determinations

- Red: Static b-quarks; Black: Lattice NRQCD b quarks
- Interesting playground for understanding systematic uncertainties!

Daniel Mohler (TU Darmstadt)

Recent study with local and scattering interpolators

Alexandrou et al. arXiv:2404.03588

- NRQCD bottom; Wilson Clover with HYP-smearing for the valence quarks; HISQ 2+1+1 sea
- Authors assume/argue that finite-volume effects to be negligible compared to their statistical uncertainty

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

T_{bbs} – Basis and effective masses

$$M = (\bar{b}\gamma_5 u)(\bar{b}\gamma_i s), \quad N = (\bar{b}Iu)(\bar{b}\gamma_5\gamma_i s)$$
$$O = (\bar{b}\gamma_5 s)(\bar{b}\gamma_i u), \quad P = (\bar{b}Is)(\bar{b}\gamma_5\gamma_i u)$$
$$Q = \epsilon_{ijk}(\bar{b}\gamma_j u)(\bar{b}\gamma_k s).$$

Dublin, 6. June, 2024

글 눈

T_{bbs} – chiral and infinite volume extrapolation

• Chiral/infinite-volume Ansatz:

$$\Delta_{\ell s \bar{b} \bar{b}} (\Delta \phi_2, m_K L, a) = \Delta_{\ell s \bar{b} \bar{b}} (0, \infty, a) \left(1 + A \Delta \phi_2 + B e^{-m_K L} \right)$$

- Large $e^{-m_K L}$ volume effects.
- Consistent with light-diquark picture.

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Overview of lattice T_{bbs} determinations

• Close/overlapping EM threshold $BB_s\gamma$, still possible that it is narrow and decays weakly

Daniel Mohler (TU Darmstadt)

EL OQO

Recent study with local and scattering interpolators

Alexandrou et al. arXiv:2404.03588

- NRQCD bottom; Wilson Clover with HYP-smearing for the valence quarks; HISQ 2+1+1 sea
- Authors assume/argue that finite-volume effects to be negligible compared to their statistical uncertainty

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Dublin, 6. June, 2024

Sad prospects for T_{bb} : Difficult to see at the LHC

- T_{bb} is very heavy ($\approx 10.5 \text{ GeV}$) and decays weakly
- A possible exemplary decay channel could be see Phys.Rev.Lett. 118 (2017) 14, 142001 A. Francis, RJH et al.:

$$T_{bb} \to B^+ \bar{D}^0$$

• It is unlikely to be found anytime soon at the LHC

- Obvious next candidate 0⁺ or 1⁺ $ud\bar{c}\bar{b}$ " T_{cb} " potentially unbound or very weakly bound, due to the reduction of binding from the heavy antidiquark.
- Further exotic states $ud\bar{s}b$ or $us\bar{c}b$ seem to be unlikely by diquark picture but worth investigating as some models predict these being deeply bound (mostly Chiral Quark models)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

The $0^+/1^+ \; T_{cb}$ - confusing results

• New results:

Alexandrou *et al.*, PRL 132 151902 (2024) Radhakrishnan *et al.*, arXiv:2404.08109 Padmanath *et al.*, PRL 132 201902 (2024)

- Close to threshold state could also be a virtual bound state
- Results are more or less incompatible

Daniel Mohler (TU Darmstadt)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Shallow bound states and broad resonances in a scattering study

Alexandrou et al., PRL 132 151902 (2024)

	$\Delta m_{\rm GBS}$ [MeV]	$\Delta m_{\rm R}$ [MeV]
$J\!=\!0$	$-0.5^{+0.4}_{-1.5}$	138(13)
$J\!=\!1$	$-2.4^{+2.0}_{-0.7}$	67(24)

• Obtained resonance poles just outside the radius of convergence of the ERE

Improving RHQ b-quarks

I think NRQCD for the T_{bb} and T_{bbs} is at an end. RHQ b-tuning using the "Tsukuba" action as we did for charm in .

- Again learn the dependence of states on parameters
- Absolute scales included
- Fixed $c^2 = 1$ to ensure relativistic nature
- 5-parameter tuning
- see large variations from 1 of r_s, ν, c_E, c_B

Figure: Schematic picture of our RHQ b-quark tuning

A glimpse at the future: T_{BB} with RHQ bottom

34/37

EL OQO

A glimpse at the future: Resulting *B*-meson masses

э. Dublin, 6. June, 2024

э

EL OQO

Outline

Introduction and Motivation

2 Positive-parity B_S states

3 Doubly-heavy tetraquarks

4 Conclusions and Outlook

Conclusions and Outlook

- Positive-parity heavy-light mesons
 - NRQCD calculation with full uncertainty estimate for B_0^* and B_{s1} \rightarrow refined predictions for LHCb, BelleII
 - Calculation could be further improved with RHQ action
 - Scattering amplitudes for the $D_{s0}^*(2317)$ and D_{s1} states using RHQ action planned
- Explicitly exotic heavy-quark tetraquarks
 - Lattice QCD is good at determining deeply-bound states and can rule out phenomenological models for states not yet observed in experiment
 - The calculations are systematically-improvable and we are seeing convergence for the easiest-to-compute quantities such as the T_{bb}
 - The smoking-gun tetraquark state T_{bb} is very difficult to see in current experiments; it is worth exploring weaker-bound candidates such as T_{bc}
 - More and more indications that the multi-quark exotic spectrum at heavy masses is diverse
 - Further insight can be gained from exploring the quark-mass dependence between charm and bottom.

Backup slides

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Dublin, 6. June, 2024

< 口 > < 同

▶ ★ 토 ▶ ★ 토 ▶ 토 = ♥ ♥ ♥

Comparison of b and c parameters - c_E and c_B

Figure: RHQ clover terms c_E and c_B for **bottom** and **charm**

As a rule of thumb $c_E \approx c_{SW}$, $c_B > c_E$. No big difference between bottom and charm!

Comparison of b and c parameters - κ, r_s, ν

Figure: RHQ action terms r_s, ν, κ for **bottom** and **charm**

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Dublin, 6. June, 2024

ELE DOG

$D_{s0}^{*}(2317)$: D-meson – Kaon s-wave scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

Charm-light hadrons

$$p \cot \delta_0(p) = \frac{2}{\sqrt{\pi L}} Z_{00} \left(1; \left(\frac{L}{2\pi} p \right)^2 \right)$$
$$\approx \frac{1}{a_0} + \frac{1}{2} r_0 p^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

$D_{s0}^{*}(2317)$: D-meson – Kaon s-wave scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

DM et al. PRL 111 222001 (2013) Lang, DM et al. PRD 90 034510 (2014)

Results for ensembles (1) and (2)

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Positive-parity states in the D_s and B_s spectrum

- DM et al. PRL 111 222001 (2013)
- Lang, DM et al. PRD 90 034510 (2014)

Lang, DM, Prelovsek, Woloshyn PLB 750 17 (2015)

• Uncontrolled systematics sizable for the *D_s* states

- Full uncertainty estimate only for magenta B_s states
- Prediction of exotic states from Lattice QCD!

Daniel Mohler (TU Darmstadt)

D_s results in multiple volumes from RQCD

Bali, Collins, Cox, Schäfer, PRD 96 074501 (2017)

- Study with different volumes at pion masses of 150, 290 MeV
- Results confirm basic behavior seen in a single volume
- Discretization effects remain unexplored

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

D_s results in multiple volumes from RQCD

Bali, Collins, Cox, Schäfer, PRD 96 074501 (2017)

- Study with different volumes at pion masses of 150, 290 MeV
- Results confirm basic behavior seen in a single volume
- Discretization effects remain unexplored

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

DK and $D\bar{K}$ scattering and the $D_{s0}^*(2317)$

Hadron spectrum collaboration, Cheung et al. JHEP 02 100 (2021)

• Study uses moving frames in addition results in large number of energy levels at $m_{\pi} = 238,391$ MeV

Daniel Mohler (TU Darmstadt)

Exotic hadrons with heavy quarks

Dublin, 6. June, 2024 44/37

DK and $D\bar{K}$ scattering and the $D_{s0}^*(2317)$

Hadron spectrum collaboration, Cheung et al. JHEP 02 100 (2021)

• Study uses moving frames in addition results in large number of energy levels at $m_{\pi} = 238,391 \text{ MeV}$

Daniel Mohler (TU Darmstadt)

Dublin, 6. June, 2024 44/37

EL OQO