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Glueball spectrum in pure SU(3) Yang-Mills

• Gluballs are quarkless bound
states predicted by QCD

• Conclusive experimental
detection of glueballs is still
missing

• Theory calculations heavily rely
on lattice studies
(quenched/unquenched)

[Y. Chen et al., PRD, hep-lat/0510074]
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News from experiment
BES III announced the determination of X(2370) with JPC = 0−+.

Is it the pseudoscalar glueball?
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What do we know?

• Experimental result is in good agreement with quenched lattice result (mG ≈ 2.4GeV).

• Unquenched lattice results tend to be in agreement with quenched results at least for
pseudoscar and tensor channels. However no conclusive statement exist on this matter.

• No continuum exptrapolation results exist for unquenched lattice studies. However,
dependence on the lattice specing seems weak.

What we don’t know (yet)

• Mixing with qq states in unquenched setting.

• Unquenching suppression effects especially in the scalar channel.

• Systematic effects due to choice of operators in variational basis.

• The production rate of glueball states (a quenched results exists for the 0−+ channel [Gui
L.C. et. al., PRD,1906.03666]).

A. Smecca (Swansea University) Glueball spectrum from ρσ(ω) Dublin workshop 4 / 21



What do we know?

• Experimental result is in good agreement with quenched lattice result (mG ≈ 2.4GeV).

• Unquenched lattice results tend to be in agreement with quenched results at least for
pseudoscar and tensor channels. However no conclusive statement exist on this matter.

• No continuum exptrapolation results exist for unquenched lattice studies. However,
dependence on the lattice specing seems weak.

What we don’t know (yet)

• Mixing with qq states in unquenched setting.

• Unquenching suppression effects especially in the scalar channel.

• Systematic effects due to choice of operators in variational basis.

• The production rate of glueball states (a quenched results exists for the 0−+ channel [Gui
L.C. et. al., PRD,1906.03666]).

Ü Further work needed to improve lattice QCD calculations of the glueball
spectrum
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Glueballs on the lattice

Glueballs masses can be extracted
from lattice correlation functions

G(aτ) = 〈Φ(aτ)Φ(0)〉conn. =
∑
n

|An|2e−aτωn

An = 〈n|Φ(0)|0〉 → energy state overlap

Bad signal/noise ratio
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Glueballs on the lattice

Glueballs masses can be extracted from lattice
correlation functions

G(aτ) = 〈Φ(aτ)Φ(0)〉conn. =
∑
n

|An|2e−aτωn

An = 〈n|Φ(0)|0〉 → energy state overlap

“We face an impasse: if t is small the
estimated mass is not the true mass and if t is
large the statistical error may be so large that

nothing may be measured” G. Parisi
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Variational method

The situation is improved considering
a large set of operators with different
smearing/blocking∑

j

Cij(t0)vj =
∑
j

λj(t0)Cij(0)vj

ameff (t0) = ln

(
viCij(t)vj

viCij(t− 1)vj

)

Cii(aτ) = |An|2 cosh(amiτ −
NL

2
)
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• The “standard”
method led to
impressive results over
the years

• Variational method
help disentangle states

• Pratically can only use
few lattice times
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Can we use spectral functions?

Writing the Euclidean correlator in the Källen-Lehmann representation

G(aτ) =

∫ ∞
ωmin

dω ρ(ω)e−aωτ

Ü For lattice correlators this leads to a ill-posed inverse problem

Ü Need a method to regularise the problem. Also, finite volume (L) means

ρL(ωn) =
∑
n

|〈n|Φ(0)|0〉|2
2ωn

δ(ω − ωn).
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HLT method [Hansen, Lupo, Tantalo, PRD, 1903.06476]

We can use Backus-Gilbert regularisation
to extract smeared spectral function from
the lattice correlation function

∆σ(ω; g) =

τmax∑
τ=1

gτ (σ, ωn)e−aτω

σ/a = 0.3, aωn = 0.35

ρσL(ωn) =

∫ ∞
0

dω ρL(ω)∆σ(ω − ωn) '
τmax∑
τ=1

gτ (σ, ωn)G(aτ).
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Backus-Gilbert regularisation
Hansen, Lupo, Tantalo, PRD, 1903.06476

An[g] =

∫ ∞
ω0

dω wn(ω)
∣∣∆σ(ω; g)−∆σ(ω − ωn)

∣∣2.

[Hansen, Lupo, Tantalo, PRD, 1903.06476]
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Backus-Gilbert regularisation
Hansen, Lupo, Tantalo PRD, 1903.06476

Wn[g] =
An[g]

An[0]
+ λ

B[g]

Bnorm
,
∂Wn[g]

∂gτ

∣∣∣∣∣
gpτ=g∗τ

= 0

An[g] =

∫ ∞
ω0

dω wn(ω)
∣∣∆σ(ω; g)−∆σ(ω − ωn)

∣∣2.

B[g] =

τmax∑
τ1,τ2=1

gτ1gτ2 Cov(τ1, τ2),

p = (α, λ, ωmin, τmax, )

[Hansen, Lupo, Tantalo, PRD, 1903.06476]
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Stability analysis

• Method introduced in
[Bulava et al., JHEP, 2111.12774]

• Choose final result in statistically
dominated region

A[g∗]

A[0]
= kB[g∗]

• Final results need to be
extrapolated

ρ(ω) = lim
σ→0

lim
L→∞

ρσL(ω)

d(gp) =
√
A[g]/A[0]
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Ensembles details

We are currently at a very pleriminary stage and plan to soon include more values of β and
other representations A−+1 , E++, . . .

JPC β L3 × T Ncnfg

A++
1 5.8941 323 × 32 15000

A++
1 6.0625 323 × 32 15000
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Fit of smeared spectral functions

• Introduced in
[Del Debbio, et al., 2211.09581,

Eur.Phys.J.C.]

• We can perform fit of spectral
functions rather than correlators

• Minimise χ2 function defined in
terms of Cov[ρσ]

fσk (ω) =
∑
k

ak e
−(ω−ωk)

2

2σ2 ,

[Athenodorou,Teper, 2007.06422, JHEP]

β = 5.89, σ = 0.3/a, χ2
red = 1.45
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Reducing σ is challenging

β = 5.89, σ = 0.25/a, aωn = 0.6 β = 5.89, σ = 0.25/a, χ2
red = 2.14
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Reducing the lattice spacing

β = 6.0625, σ = 0.3/a, χ2
red = 1.06
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Preliminary results

β spectral fit effective mass

am0 5.89 0.779(58) 0.799(10)
am1 5.89 1.262(43) 1.345(14)
am0 6.0625 0.595(13) 0.6365(43)
am1 6.0625 1.074(14) 1.111(11)

Effective mass results taken from [Athenodorou,Teper, 2007.06422, JHEP]
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What’s next

• Accuracy of final results depends on correlator’s precision:

Increase statistics to match literature standard

Use multi-level (?)

• Extend analysis to other representations A−+1 , E++, . . . and different volumes.

• Perform continuum limit a→ 0.

• Repeat study in un-quenched setting where glueballs are allowed to decay:

We want to study how the spectral density ρ(ω) changes as we change amπ, effectively
going from a nearly quenched set-up to the physical scenario.

Here the double limit L→∞ and σ → 0 will be a crucial step.
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Take home points

• The standard method of extracting glueball masses is particularly challenging.

• The investigation of the glueball spectrum using spectral densities gives an additional tool
to determine the glueball energy states

• The limited precision of glueball correlators is a problem also in the spectral density
picture.

• The preliminary results are encouraging and a full systematic study will appear (hopefully)
soon!
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BACKUP SLIDES
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σ expansion of ρσ(ω)

The σ → 0 extrapolation is done following an expansion of ρ(ω) for small σ. Following
[Bulava et al., 2111.12774, JHEP]

ρ(ω)σ = πρ(ω) + σ2
π

2
ρ(2)(ω)

∫ ∞
−∞

dx x2n+2∆(x) +O(σ2n+2) ∀n ∈ N

where ∆(x) =
exp(−x

2

2
)√

2π
, x = ω − ωn and ρ(ω)(2) is the second derivative w.r.t. σ
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Glueball smeared spectral functions
Studying the spectral functions allows to check contributions to the optimal correlators in the
variational method

β = 5.8941, σ = 0.15/a
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