Niccolò Forzano

Dublin, 07/06/2024

Based on work [arXiv:2405.01388] with E. Bennett, L. Del Debbio, R. Hill, D.K. Hong, H. Hsiao, J.W. Lee, C.-J.D. Lin, B. Lucini, A. Lupo, M. Piai, D. Vadacchino, F. Zierler

Overview

Lattice setup.

Benchmarks for our findings.

• What is spectral density?

• How do we study it?

Numerical results.

Lattice setup

- We consider a Sp(4) gauge theory with $N_f = 2$ (dynamical) fermions in the fundamental representation and $N_{as} = 3$ in the 2-index antisymmetric one. \rightarrow [Phys.Rev.D106 (2022) 1, 014501]
- We write the Euclidean action, discretised in four dimensions, as the sum of the gauge S_g and fermion S_f actions,

$$S \equiv S_g + S_f ,$$

where

$$S_g \equiv \beta \sum_x \sum_{\mu < \nu} \left(1 - \frac{1}{2N} \operatorname{Re} \mathcal{P}_{\mu\nu}(x) \right),$$

$$S_f \equiv a^4 \sum_{j=1}^{N_{\rm f}} \sum_x \overline{Q}^j(x) D_m^{\rm (f)} Q^j(x) + a^4 \sum_{j=1}^{N_{\rm as}} \sum_x \overline{\Psi}^j(x) D_m^{\rm (as)} \Psi^j(x) \,, \label{eq:Sf}$$

• We perform simulation by using (rational) hybrid Monte-Carlo simulations (RHMC)

$$Z = \int \mathcal{D}U \mathcal{D}Q \mathcal{D}\bar{Q} \mathcal{D}\Psi \mathcal{D}\bar{\Psi} e^{-S[U,Q,\bar{Q},\Psi,\bar{\Psi}]}$$

LSDensities, new python library [https://github.com/LupoA/lsdensities]

🐉 master 👻 🐉 5 Branches 🛇 0 Tags	Q Go to file	t Add file 🔹 🗘 Code 👻	About	
ickforce98 Last polishing for #25		17ba631 - 4 days ago 🕚 145 Commits	Smeared spectral densities from lattice correlators	
documents	documentation	3 months ago	🛱 Readme	
examples	polishing to prepare fixing #25	4 days ago	4⃣️ GPL-3.0 license -৵ Activity	
src 🖿	Last polishing for #25 4 days ago		습 0 stars	
tests	fix broken test	4 days ago	 2 watching 9 of orks Report repository 	
LICENSE.txt	Package first commit	2 weeks ago		
README.md	Update README	4 days ago		
pyproject.toml	about to change repos name	5 days ago	Releases No releases published	
C README GPL-3.0 license		Ø :=	Create a new release	
LSDensities: Lattice Sp	Packages No packages published Publish your first package			

Isdensities is a Python library for the calculation of smeared spectral densities from lattice correlators.

Solutions can be obtained with the <u>Hansen Lupo Tantalo</u> method and <u>Bayesian inference with Gaussian Processes</u>, or combinations of the two.

This library is based on mpmath for performing the high-precision arithmetic operations that are necessary for the solution of the inverse problem.

Contributors 3

T LupoA Alessandro Lupo

nickforce989 Niccolò Forzano

nickforce98

Benchmarks for our findings

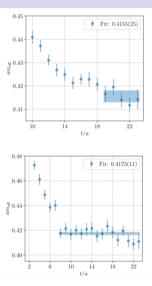
- Comparisons with spectral density findings will be done using technologies already used in the literature:
 - Effective mass plateaus to isolate ground states

$$C(t) = \langle O(t)\bar{O}(0) \rangle \xrightarrow{t \to \infty} K \cdot e^{-M_0 t} \Rightarrow a m_{\text{eff}} = -\ln\left[\frac{C(t+1)}{C(t)}\right]$$

Generalised Eigenvalue Problem (GEVP) to isolate excited states

$$C(t_2)v_n(t_2, t_1) = \lambda_n(t_2, t_1)C(t_1)v_n(t_2, t_1) \to \lambda_n(t_2, t_1)$$

where C(t) is a matrix of correlation functions having the same spectrum.



WHAT is spectral density?

What is spectral density

• What is spectral density?

 \rightarrow At positive Euclidean times $t \ge 0$ the previous correlator can be rewritten as

$$C(t) = \int_0^\infty dE \rho_L(E) e^{-tE}$$

and we defined

$$\rho_L(E) = \langle 0 | \mathcal{O}(0) \,\delta(E - H_L) \,\bar{\mathcal{O}}(0) | 0 \rangle_L$$

Several applications:

Spectroscopy [arXiv:2212.08019].

 \rightarrow Case study: Sp(4) theory with $N_{\rm f} = 2$, $N_{\rm as} = 3$ dynamical fermions.

- Study of inclusive decay rates [arXiv:2111.12774].
- Study of sphaleron rate (and maybe deconfinement?) [arXiv:2309.13327].

Mass extractions and spectral density

WHAT is spectral density?

Spectral density extraction

To extract $\rho_L(E)$ from C(t):

• Having a finite volume Hamiltonian H_L , we will have

$$\rho_L(E) = \sum_n w_n(L) \,\delta(E - E_n(L))$$

which is mostly lost in the continuum limit, where above the multi-particle threshold the spectral density becomes continuous.

 \rightarrow We smear the spectral densities using a smearing kernel $\Delta_{\sigma}(E, \omega)$

$$\hat{\rho}_{\sigma}(\omega) = \int_0^{\infty} dE \,\Delta_{\sigma}(E,\omega) \rho_L(E)$$

(To be noted: correlator smearing \neq spectral density smearing).

• We need to perform an inverse Laplace-transform which is ill-posed.

Mass extractions and spectral density

WHAT is spectral density?

Ill-posed problem

The problem is ill-posed. This can be seen by expanding

$$\bar{\Delta}_{\sigma}(E,\omega) = \sum_{t=0}^{t_{\max}} g_t(\omega) e^{-(t+1)E}$$

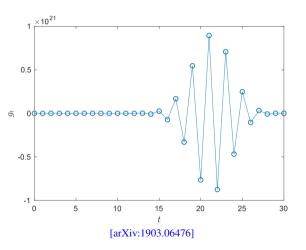
(therefore

$$\hat{\rho}(\omega) = \sum_{t=0}^{t_{\text{max}}} g_t(\omega) C(t+1)$$

) and finding the coefficients $g_t(\omega)$ by minimizing

$$A[\vec{g}] = \int_0^\infty dE \, |\Delta_\sigma(E,\omega) - \bar{\Delta}_\sigma(E,\omega)|^2$$

Therefore, if $C(t) = \overline{C}(t) + \delta(C(t))$ and the uncertainty on the spectral density $\delta(C(t)) \times g_t(E)$ will be uncontrolled.



Mass extractions and spectral density

HOW do we study spectral density?

Spectral density algorithm

We will reconstruct spectral densities using a modified Backus-Gilbert method: HLT method (Hansen-Tantalo-Lupo) [1].

To determine the vector of coefficients $\vec{g} = \vec{g}(E)$ for the spectral reconstruction, we minimize the functional

$$W[\vec{g}] = \frac{A[\vec{g}]}{A[0]} + \lambda \frac{B[\vec{g}]}{B_{\text{norm}}} \quad , \quad \lambda \in (0,\infty)$$

where $B_{\text{norm}} = C^2(1)/E^2$ (lattice spacing a = 1, for convenience)

$$A[\vec{g}] = \int_0^\infty dE \, e^{\alpha E} \, |\bar{\Delta}_\sigma(E,\omega) - \Delta_\sigma(E,\omega)|^2$$
$$B[\vec{g}] = \sum_{\tau,\tau'} g_\tau \operatorname{Cov}_{\tau\tau'}[C] g_{\tau'}$$

For each energy we reconstruct the spectral density

$$\hat{\rho}(E) = \sum_{t} g_t(E) C(t)$$

- Mass extractions and spectral density
 - HOW do we study spectral density?

Smearing kernels

In order to check the quality of reconstruction, we also check that at each energy the reconstruction of the kernels we use:

$$\bar{\Delta}_{\sigma}(E,\omega) = \sum_{t=0}^{t_{\text{max}}} g_t(\omega) e^{-(t+1)E}$$

We use as target kernels:

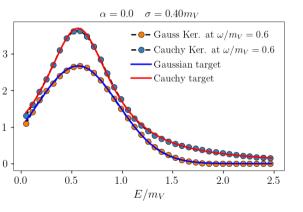
Gaussian kernel:

I.

$$\bar{\Delta}_{\sigma}^{(1)}(E,\omega) = e^{-\frac{(E-\omega)^2}{2\sigma^2}}/Z(\omega)$$

with
$$Z(\omega) = \int_0^\infty dE \, e^{\frac{-(E-\omega)^2}{2\sigma^2}}$$
.
Cauchy kernel:

$$\bar{\Delta}^{(2)}_{\sigma}(E,\omega) = \frac{\sigma}{\left[(E-\omega)^2 + \sigma^2\right]}$$



Mass extractions and spectral density

HOW do we study spectral density?

Spectral density reconstruction systematic errors

Minimize

$$W[\vec{g}] = \frac{A[\vec{g}]}{A[0]} + \lambda \frac{B[\vec{g}]}{B_{\text{norm}}}$$

while varying α and λ .

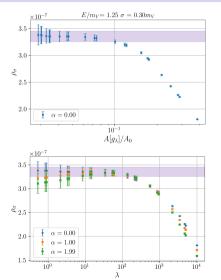
The first component of systematic error for each of these values ρ̂(E), will be estimated as

$$\sigma_{1, \text{sys}}(\hat{\rho}(E)) = |\hat{\rho}_{\lambda_*}(E) - \hat{\rho}_{\lambda_*/10}(E)|$$

where λ_* was found through the plateaus procedure described above.

The second component of systematic error for each of the values $\hat{\rho}(E)$, will be estimated as

$$\sigma_{2, \text{sys}}(\hat{\rho}(E)) = |\hat{\rho}_{\lambda_*, \alpha_2}(E) - \hat{\rho}_{\lambda_*, \alpha_1}(E)|$$



Mass extractions and spectral density

HOW do we study spectral density?

Spectral density fits

Given this procedure, we can perform fits of the spectral density, minimizing the functional [2]

$$\chi^{2} = \sum_{E, E'} \left(f_{\sigma}^{(k)}(E) - \hat{\rho}_{\sigma}(E) \right) \operatorname{Cov}_{EE'}^{-1} \left[\hat{\rho}_{\sigma} \right] \left(f_{\sigma}^{(k)}(E') - \hat{\rho}_{\sigma}(E') \right)$$

where we fit the spectral densities as:

Sum of Gaussians

$$f_{\sigma}^{(k)}(E) = \sum_{n=1}^{k} \mathcal{A}_n \Delta_{\sigma}^{(1)}(E - E_n)$$

Sum of Cauchy functions

$$f_{\sigma}^{(k)}(E) = \sum_{n=1}^{k} \mathcal{A}_n \Delta_{\sigma}^{(2)}(E - E_n)$$

(remember that $\rho_L(E) = \sum_n w_n(L) \,\delta(E - E_n(L))$ and $\hat{\rho}_\sigma(\omega) = \int_0^\infty dE \,\Delta_\sigma(E, \omega) \rho(E)$)

Mass extractions and spectral density

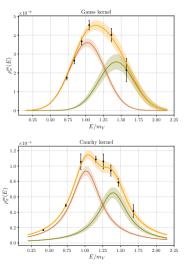
HOW do we study spectral density?

Energy levels fitting: cross checks

• We perform several cross checks, for example we fit using both a Gaussian and Cauchy kernel

 $\sigma_{1, \text{ sys}}(aE_n) = |aE_{n, \text{ Gauss}} - aE_{n, \text{ Cauchy}}|$

and we evaluate the difference between the same energy state, determined using the two kernels.



Mass extractions and spectral density

└─ Numerical results

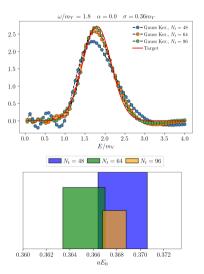
Improving the results: enlonging time extent

• We can increase values of N_t .

 \rightarrow Increase basis to expand Kernel and spectral density, more accurate reconstruction.

$$\bar{\Delta}_{\sigma}(E.\omega) = \sum_{t=0}^{t_{\max}} g_t(\omega) e^{-(t+1)E}$$

(where $t_{\text{max}} < T$).



Mass extractions and spectral density

-Numerical results

Numerical results: comparison with GEVPs

2.00

 $1.75 \cdot$

1.50

1.25

0.75 · 0.50 ·

0.25

0.00

Ó

5

10

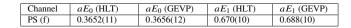
t/a

 We compare the GEVPs from several channels to check the excited states.

Channel	Interpolating
	operator
PS (F/AS)	$\bar{F}^i \gamma_5 F^j$
V (F/AS)	$\bar{F}^i \gamma_\mu F^j$
T (F/AS)	$ar{F^i}\gamma_0\gamma_\mu F^j$
AV (F/AS)	$\bar{F}^i \gamma_5 \gamma_\mu F^j$
AT (F/AS)	$ar{F}^i \gamma_5 \gamma_0 \gamma_\mu F^j$
S (F/AS)	$\bar{F}^i F^j$

where *i*, *j* are flavour indices and $F = Q, \Psi$.

- They come out to be compatible within statistical uncertainty.
- \rightarrow Example:

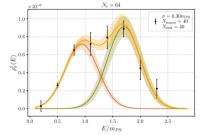


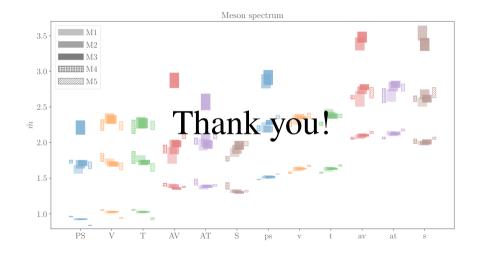
15

aE₀ fit: 0.3656(12)

 aE_1 fit: 0.688(10) aE_2

20





Bibliography

- M. Hansen, A. Lupo and N. Tantalo, Phys. Rev. D 99 (2019) no.9, 094508 doi:10.1103/PhysRevD.99.094508 [arXiv:1903.06476 [hep-lat]].
- A. Lupo, L. Del Debbio, M. Panero and N. Tantalo, PoS LATTICE2022 (2023), 215 doi:10.22323/1.430.0215 [arXiv:2212.08019 [hep-lat]].
- M. Albanese et al. [APE], Phys. Lett. B 192, 163-169 (1987) doi:10.1016/0370-2693(87)91160-9
- S. Gusken, Nucl. Phys. B Proc. Suppl. 17, 361-364 (1990) doi:10.1016/0920-5632(90)90273- W

Backup slides: Sp(2N) Lie group

We denote as Sp(2N) the subgroup of SU(2N) preserving the norm induced by the antisymmetric matrix Ω ,

$$\Omega = \begin{pmatrix} 0 & 1_N \\ -1_N & 0 \end{pmatrix} ,$$

where 1_N is the $N \times N$ identity matrix. This definition can be converted into a constraint on the group element U

$$U\Omega U^T = \Omega$$
 .

Due to unitarity, the previous condition can be also written as

 $U\Omega = \Omega U^*$,

which implies the following block structure

$$U = \begin{pmatrix} A & B \\ -B^* & A^* \end{pmatrix} ,$$

Backup slides: Wilson-Dirac operators on the lattice

The massive Wilson-Dirac operators are defined as

$$\begin{split} D_m^{(\mathrm{f})} Q^j(x) &\equiv (4/a + m_0^{\mathrm{f}}) Q^j(x) \\ &\quad -\frac{1}{2a} \sum_{\mu} \left\{ (1 - \gamma_{\mu}) U_{\mu}^{(\mathrm{f})}(x) Q^j(x + \hat{\mu}) + (1 + \gamma_{\mu}) U_{\mu}^{(\mathrm{f}),\dagger}(x - \hat{\mu}) Q^j(x - \hat{\mu}) \right\} \,, \end{split}$$

and

$$\begin{split} D_m^{(\mathrm{as})} \Psi^j(x) &\equiv (4/a + m_0^{\mathrm{as}}) \Psi^j(x) \\ &\quad -\frac{1}{2a} \sum_{\mu} \left\{ (1 - \gamma_{\mu}) U_{\mu}^{(\mathrm{as})}(x) \Psi^j(x + \hat{\mu}) + (1 + \gamma_{\mu}) U_{\mu}^{(\mathrm{as}),\dagger}(x - \hat{\mu}) \Psi^j(x - \hat{\mu}) \right\} \,, \end{split}$$

Backup slides: antisymmetric links definition

The link variables $U_{\mu}^{(as)}(x)$ are defined as follows:

$$U_{\mu,(ab)(cd)}^{(as)} = \left(e^{(ab)T} U_{\mu}^{(f)} e^{(cd)} U_{\mu}^{(f)T} \right) ,$$

where $e^{(ab)}$ are the elements of an orthonormal basis in the (N(2N-1)-1)-dimensional space of $2N \times 2N$ antisymmetric and Ω -traceless matrices, and the multi-indices (ab) run over the values $1 \le a < b \le 2N$. The entry *i j* of each element of the basis is defined as follows. For $b \ne N + a$.

$$e_{ij}^{(ab)} \equiv \frac{1}{\sqrt{2}} \left(\delta_{aj} \delta_{bi} - \delta_{ai} \delta_{bj} \right) \ .$$

while for b = N + a and $2 \le a \le N$,

$$e_{i,i+N}^{(ab)} = -e_{i+N,i}^{(ab)} \equiv \begin{cases} \frac{1}{\sqrt{2a(a-1)}} , & \text{for } i < a , \\ \frac{1-a}{\sqrt{2a(a-1)}} , & \text{for } i = a . \end{cases}$$

Backup slides: RHMC, rational hybrid Monte-Carlo

- The (R)HMC algorithms generate a Markov chain of gauge configurations distributed as required by the lattice action.
- Bosonic degrees of freedom ϕ and ϕ^{\dagger} , known as pseudofermions, are introduced replacing a generic number n_f of fermions.
- Powers of the determinant of the hermitian Dirac operator, $Q_m^R = \gamma_5 D_m^R$, in representation R can then be expressed as

$$\left(\det D_m^R\right)^{n_f} = \left(\det Q_m^R\right)^{n_f} = \int \mathcal{D}\phi \mathcal{D}\phi^{\dagger} e^{-a^4 \sum_x \phi^{\dagger}(x) \left(Q_m^2\right)^{-n_f/2} \phi(x)} ,$$

For odd values of n_f , the rational approximation is used to compute odd powers of the determinant above, resulting in the RHMC.

Backup slides: RHMC, rational hybrid Monte-Carlo (2)

The fictitious hamiltonian is

$$H = \frac{1}{2} \sum_{x,\mu,a} \pi^{a}(x, \mu) \pi^{a}(x, \mu) + H_{g} + H_{f},$$

The molecular dynamics (MD) evolution in fictitious time τ is dictated by

$$\frac{\mathrm{d}U_{\mu}(x)}{\mathrm{d}\tau}=\pi(x,\,\mu)U_{\mu}(x)\,,\quad \frac{\mathrm{d}\pi(x,\,\mu)}{\mathrm{d}\tau}=F(x,\mu)\,,$$

where $F(x, \mu)$, known as the HMC force.

Numerical integration of the MD equations thus leads to a new configuration of the gauge field, which is then accepted or rejected according to a Metropolis test.

Backup slides: formulas for spectral density reconstruction

A0_mp and A0E_mp

$$A_0(\omega) \equiv A[0](\omega) = \int_{E_0}^{\infty} dE \, e^{\alpha E} \Delta_{\sigma}(E, \omega)^2 = \frac{e^{\frac{\alpha^2 \sigma^2}{4} + \alpha \omega} \left(\operatorname{erf}\left(\frac{\alpha \sigma^2 + 2\omega - 2e_0}{2\sigma}\right) + 1 \right)}{4\sqrt{\pi}\sigma}$$

∎ ft_mp

$$\begin{split} f_t(\omega) &= \int_{E_0}^{\infty} dE \, \Delta_{\sigma}(E, \omega) \, b_T(t, E) \, e^{\alpha E} \\ &= \frac{1}{2} \left\{ e^{\frac{1}{2}(\alpha + t - T) \left(\sigma^2(\alpha + t - T) + 2\omega \right)} \left(\operatorname{erf} \left(\frac{\sigma^2(\alpha + t - T) + \omega - e_0}{\sqrt{2}\sigma} \right) + 1 \right) \right. \\ &+ e^{\frac{1}{2}(\alpha - t) \left(\sigma^2(\alpha - t) + 2\omega \right)} \operatorname{erfc} \left(\frac{\sigma^2(t - \alpha) - \omega + e_0}{\sqrt{2}\sigma} \right) \, \end{split}$$

Backup slides: formulas for spectral density reconstruction (2)

In the code, we express $f_t(\omega)$ by means of the following function called generalised_ft:

$$\tilde{f}_t(\omega) = e^{\frac{1}{2}(\alpha-t)\left(\sigma^2(\alpha-t)+2\omega\right)} \operatorname{erfc}\left(\frac{\sigma^2(t-\alpha)-\omega+e_0}{\sqrt{2}\sigma}\right) ,$$

so that we can write
$$f_t(\omega) = \frac{\tilde{f}_t(\omega) + \tilde{f}_{T-t}(\omega)}{2}$$

Smatrix_mp

$$S_{tr} = \frac{e^{E_0(\alpha - r - t - 2)}}{t + r + 2 - \alpha} + \frac{e^{E_0(\alpha + r + t + 2 - 2T)}}{2T - t - r - 2 - \alpha} + \frac{e^{E_0(\alpha + r - t - T)}}{T + t - r - \alpha} + \frac{e^{E_0(\alpha - r + t - T)}}{T - t + r - \alpha}$$

We also have

$$B_{tr} = Cov_{tr}$$

 $B_{\text{norm}} = C(1)$ can be used to make B[g] dimensionless.

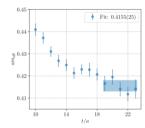
• The minimisation then amounts to solve the following linear system

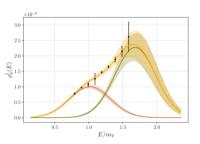
$$\vec{g} = \left(S + \frac{\lambda A_0(\omega)}{(1-\lambda)(\omega)} B \right)^{-1} \vec{f} .$$

Backup slides: Numerical results: using Wuppertal and APE smearings

• We use APE [3] and Wuppertal smearing [4] to increase the overlap between the operators and the ground state

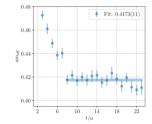
$$C(t) = \sum_{n} \frac{\langle 0|\mathcal{O}(0)|n\rangle \langle n|\bar{\mathcal{O}}(0)|0\rangle}{2E_{n}} e^{-tE}$$

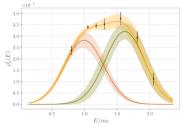




Similarly we get

$$\hat{\rho}_{\sigma}(E) = \sum_{n} \frac{\langle 0|O(0)|n\rangle \langle n|\bar{O}(0)|0\rangle}{2E_{n}}$$
$$\times \Delta_{\sigma}(E - E_{n}(L))$$





Backup slides: Wuppertal and APE smearings formulas

• Wuppertal smearing acts on fermion fields increasing the overlap of ground state.

$$q^{(n+1)}(x) = \frac{1}{1+2d\varepsilon} \left[q^{(n)}(x) + \varepsilon \sum_{\mu=\pm 1}^{\pm d} U_{\mu}(x) q^{(n)}(x+\hat{\mu}) \right]$$

• APE smearing averages out UV fluctuations of the gauge fields.

$$U_{\mu}^{(n+1)}(x) = P\left\{ (1-\alpha)U_{\mu}^{(n)}(x) + \frac{\alpha}{6}S_{\mu}^{(n)}(x) \right\}, \quad S_{\mu}(x) = \sum_{\pm \nu \neq \mu} U_{\nu}(x)U_{\mu}(x+\hat{\nu})U_{\nu}^{\dagger}(x+\hat{\mu})$$

Backup slides: varying Wuppertal and APE smearings

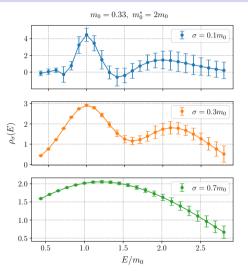
Mean amplitudes ratios						
$\epsilon^{ ext{APE}}$	$\epsilon_{\rm f}^{\rm Wuppertal}$	N _{source}	N _{sink}	$\mathcal{A}_2/\mathcal{A}_1$		
0.4	0.18	80	20	1.32(19)		
0.4	0.18	80	40	1.15(11)		
0.4	0.18	80	80	0.75(15)		
0.4	0.18	40	80	1.24(18)		
0.4	0.18	20	80	1.80(28)		
0.4	0.24	90	30	1.01(20)		
0.4	0.4	170	170	0.63(11)		
0.4	0.05	20	20	2.28(27)		
0.0	0.18	80	40	1.27(11)		

Table: Amplitudes ratio between the two-gaussian fits, for different levels of sink and source Wuppertal smearing and APE smearing.

Backup slides: choosing smearing radius

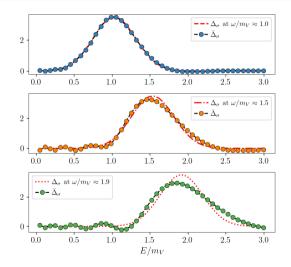


- Too large choice make the fitting procedure difficult.
- Too small one results in unreliable and even useless reconstruction.



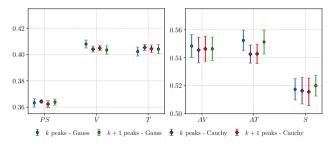
Backup slides: finiteness of information

- As the quantity of physical information in the input correlators is finite, the reconstruction will happen up to finite energies
 - The higher energies will become progressively less reliable.
 - Higher systematic effects entities.



Backup slides: Numerical results: systematic errors evaluation

 The systematic errors due to excited states contaminations and change in kernel appears to be under controlled.



aE_0 fits, fundamental sector, ensemble M2

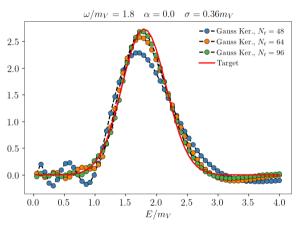
Backup slides: Improving the results: enlonging time extent

• We can increase values of N_t .

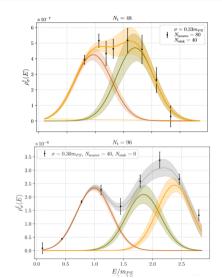
 \rightarrow Increase basis to expand Kernel and spectral density, more accurate reconstruction.

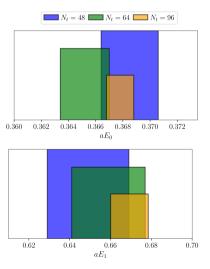
$$\bar{\Delta}_{\sigma}(E,\omega) = \sum_{t=0}^{I_{\max}} g_t(\omega) e^{-(t+1)E}$$

(where $t_{\text{max}} < T$).



Backup slides: Improving the results: enlonging time extent (2)





Backup slides: Outline

- We know how to reconstruct spectral densities \rightarrow HLT algorithm.
- Systematics evaluation for $\rho(E)$ reconstruction can be done (α , λ variation).
- Fits of the finite volume spectral densities \rightarrow Spectroscopy of gauge theories.
- Evaluation of systematics for energy levels $aE_n \rightarrow$ Different smearing kernels, k/k + 1 peak fits.
- Spectroscopy results can be improved as we consider larger lattices.

Backup slide: Benchmarks for our findings

- Comparisons with spectral density findings will be done using technologies already used in the literature:
 - Effective mass plateaus to isolate ground states

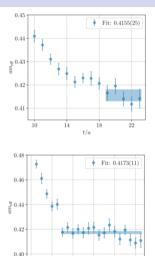
$$C(t) = \langle \mathcal{O}(t)\bar{\mathcal{O}}(0) \rangle \xrightarrow{t \to \infty} K \cdot e^{-M_0 t} \Rightarrow am_{\text{eff}} = -\ln\left[\frac{C(t+1)}{C(t)}\right]$$

Generalised Eigenvalue Problem (GEVP) to isolate excited states

$$C(t_2)v_n(t_2, t_1) = \lambda_n(t_2, t_1)C(t_1)v_n(t_2, t_1) \rightarrow \lambda_n(t_2, t_1)$$

where C(t) is a matrix of correlation functions having the same spectrum.

- We will also use additional tools:
 - Wuppertal smearing, acting on fermion fields.
 - APE smearing, acting on gauge links.



10 14 t/a

Backup slides: Ensembles

Label	β	am_0^f	am_0^{as}	$N_t \times N_s^3$
M1	6.5	-1.01	-0.71	48×20^{3}
M2	6.5	-1.01	-0.71	64×20^{3}
M3	6.5	-1.01	-0.71	96×20^{3}
M 4	6.5	-1.01	-0.70	64×20^{3}
M5	6.5	-1.01	-0.72	64×32^{3}

Table: Ensembles generated for and analysed. The inverse coupling is denoted as β and the fundamental and antisymmetric bare fermion masses by am_0^f and am_0^{as} , respectively. The lattice volume is $N_t N_s^3 a^4$.

Backup slide: Energy levels fitting: cross checks

• We perform several cross checks, for example we fit using both a Gaussian and Cauchy kernel

$$\sigma_{1, \text{ sys}}(aE_n) = |aE_{n, \text{ Gauss}} - aE_{n, \text{ Cauchy}}|$$

and we evaluate the difference between the same energy state, determined using the two kernels.

 Difference between the two and three Gaussian (or Cauchy) functions

$$\sigma_{2, \text{ sys}}(aE_n) = |aE_{n, k=3} - aE_{n, k=2}|$$

