

# **Notes on Distillation Profiles**

Jan Neuendorf



wissen.leben

## Introduction

#### **Topic:**

- Lattice QCD
  - → Hadron Spectroscopy
    → Distillation
    - $\hookrightarrow$  Profiles

#### Who is involved:

- J. Heitger
- F. Knechtli
- M. Peardon
- J. Urrea-Niño
- T. Korzec
- R. Höllwieser
- J. Finkenrath

#### **Outline:**

- 1. Basics
- 2. Distillation
- 3. Distillation Profiles
- 4. Performing the contractions
- 5. Example1: Charmonium Spectroscopy
- 6. Example2: Comparing different particles
- 7. Other Applications and Outlook

**Basics** 



$$\langle \langle O_i(t)O_j(0) \rangle \rangle = \sum_n Z_n \exp(-E_n t)$$

- **Isolate channel** with lattice group representation
- We want **good overlap** with physical states. (Typically the ground state)

 $\langle \langle O(t)O(0) \rangle \rangle = \langle \langle \bar{q}_1 \bar{\Gamma} q_2 \bar{q}_1 \Gamma q_2 \rangle \rangle$ 



Figure: Sketch of the correlator. Time on *x*-axis.

• The correlator is the **trace** over this diagram.

- $\bar{q} \Gamma q$  might have spatial component.
- States are extended
  ⇒ operators should be extended

- Interpolators must be **gauge invariant**.
- (Invariant Source) (Covariant Operation)=(New Invariant Source)



- This is a kind of **convolution**.
- We can start from a point-source.

- Interpolators must be **gauge invariant**.
- (Invariant Source) (Covariant Operation)=(New Invariant Source)



- This is a kind of **convolution**.
- We can start from a point-source.

$$q_{n+1} = c_1(\mathbb{1} + c_2 H)q_n, \quad \text{with} \quad H = \sum_i U_i(x)\delta_{x,y-i} + U_i^{\dagger}(x-i)\delta_{x,y+i}$$

- We act only on neighbors.
- This approaches convolution with a Gaussian.

$$q_{\text{final}} = f * f * f \dots f * q_{\text{initial}}$$

- Central limit theorem
- *c*<sup>2</sup> and number of iterations control the shape.
- It might not look like a Gaussian [G. Hippel et al. The Shape of Covariantly Smeared Sources in Lattice QCD]

#### Distillation

$$q_{n+1} = c_1(\mathbb{1} + c_2 H)q_n, \quad \text{with} \quad H = \sum_i U_i(x)\delta_{x,y-i} + U_i^{\dagger}(x-i)\delta_{x,y+i}$$

The Laplacian is

$$\Delta(x, y) = \frac{1}{6}H(x, y) - \delta_{x, y}.$$

We get

$$q_n = \left(\mathbb{1} + \frac{\sigma}{n}\Delta\right)^n q_0 \implies \lim_{n \to \infty} q_n = e^{\sigma\Delta}q_0,$$

Resulting in suppression of higher Laplacian eigenmodes.

#### Standard Distillation

- Higher Laplacian eigenmodes are suppressed.
- Write quark fields in space of *N<sub>V</sub>* **lowest eigenmodes**. [Michael Peardon et al., Physical Review]
- $q \rightarrow V V^{\dagger} q$  with  $\Delta V_i = \lambda_i V_i$
- Inversions can be **precomputed** and stored.
- Increasingly used for spectroscopy.

#### Standard Distillation

**Example: One meson**  $\langle \langle PP \rangle \rangle$  correlator



#### With the **perambulator**:



And the the **elemental**:



Graphics by Tomasz Korzec

#### **Distillation Profiles**

- We are free to choose  $q \rightarrow VJV^{\dagger}q$  instead [Francesco Knechtli et al., Physical Review D, 2022].
- *J* is diagonal with entries  $g(\lambda_i)$ , the **quark profile**
- Gaussians are used in practice.
- Degree of freedom analogous to smearing.
- Changes are **independent of inversion**.
- The **optimal profile** is determined by solving the GEVP.

#### **Distillation Profiles**

The perambulator:

$$\tau(t_1, t_2) = V^{\dagger}(t_1) D^{-1} V(t_2)$$

The elemental:

$$\Phi_{\substack{i,j\\\alpha,\beta}}(t) = V_i^{\dagger}(t) \Gamma_{\alpha,\beta}(t) \mathbf{g}^*(\lambda_{\mathbf{i}}(\mathbf{t})) \mathbf{g}(\lambda_{\mathbf{j}}(\mathbf{t})) V_j(t)$$

The meson correlator:

 $-\langle \operatorname{tr} \left[ \Phi_2(t) \, \tau_{q_a}(t,0) \, \bar{\Phi}_1(0) \, \tau_{q_b}(0,t) \right] \rangle_{\text{gauge}}$ 



**Figure:** Sketch of the correlator. Time on *x*-axis.

#### **Distillation Profiles**



#### Performing the contractions

 $\langle \langle tr \left[ \Phi_0(0) \tau_{q_0}(t_0, t_1) \Phi_1(t_1) \tau_{q_1}(t_1, t_2) \dots \Phi_{N-1}(t_{N-1}) \tau_{q_{N-1}}(t_{N-1}, t_0) \right] \rangle \rangle_{\text{gauge}}$ 

- $\tau$  and  $\Phi$  are  $4N_V \times 4N_V$  matrices<sup>\*</sup>
- $\Phi$  decomposes into (4 × 4)  $\bigotimes (N_V \times N_V)^*$
- Changing the profiles:
  - is volume independent
  - can be done independently for every *t<sub>n</sub>*-combination



#### Figure: N-point diagram with distillation

### Example1: Charmonium Spectroscopy

- We are interested in  $\Psi''(c\bar{c}, 1^{--})$
- $48 \times 24^3 (N_f = 2)$
- $8 \times 8$ -GEVP with:
  - $\gamma_i$  and  $\gamma_4 \gamma_i$
  - different smearings
  - covariant derivatives



Figure: spectrum without distillation.

## Example1: Charmonium Spectroscopy

#### With Distillation:

- $14 \times 14$ -GEVP with:
  - $\gamma_i$  and  $\gamma_4 \gamma_i$
  - different profiles
  - No covariant derivatives
- Similar dependence on  $\gamma_4$  inclusion



Figure: Spectrum with distillation.

### Example1: Charmonium Spectroscopy

#### With Distillation:

- $14 \times 14$ -GEVP with:
  - $\gamma_i$  and  $\gamma_4 \gamma_i$
  - different profiles
  - No covariant derivatives
- Similar dependence on  $\gamma_4$  inclusion



Figure: Distillation profiles

## Example2: Comparing different particles



Figure: Different profiles and masses on  $N_f = 3 + 1$  ensemble.

# Example2: Comparing different particles

- Reconstructed operator **applied to point source**
- **Spatial slice** and average over configurations
- tr [γ<sub>5</sub>Γ] and color average for scalar value
- [Francesco Knechtli et al., Physical Review D, 2022] see rings for excited states.



#### Figure: Profiles in real space.

### Other Applications and Outlook

- Application of profiles in **two-particle operators**
- Profiles can be used with **lattice-momenta** and **twisted boundary conditions** [J.N. @ Lattice23]
- Goal is to study  $\Psi'' \to D\bar{D}$  (and  $\rho \to \pi\pi$ ).
- Charmonium spectroscopy on  $N_f = 3 + 1$  [J. Urrea-Niño @ Lattice23]

# Thank you for listening!

