CLS scale setting from f_{π}, f_{K}

Tomasz Korzec

Hadronic physics and heavy quarks on the lattice Hamilton Mathematics Institute, TCD

T. Korzec (Uni Wuppertal)

Decoupling

Overview

A precise scale is needed for almost all projects. E.g. the coupling:

Coupling

- Finite volume: $L_{had} \Lambda_{\overline{MS}}^{(3)}$ with $\overline{g}_{GF}^2(L_{had}^{-1}) = 11.31$
- For further steps $L_{had} \Lambda_{\overline{MS}}^{(3)} \to \Lambda_{\overline{MS}}^{(3)}$ [MeV] $\to \Lambda_{\overline{MS}}^{(5)} \to \alpha_s(M_Z)$ a scale is necessary.

Two ingredients

• $1/\sqrt{t_0^{\star}}$ [MeV]

• t_0^*/a^2 at β values where $L_{had} \in \{8, 10, 12, 16, \ldots\}$ $\rightarrow [\sqrt{t_0^*}/L_{had}]^{cont}$ can be determined

(The second requirement is why t_0^* is better than t_0^{phys})

The World

Most groups compute t_0^{phys} or w_0^{phys} but not t_0^{\star}

[FLAG Review website]

Notable exception: RQCD, who compute also t_0^*

Most groups compute t_0^{phys} or w_0^{phys} but not t_0^*

(unofficial update)

Notable exception: RQCD, who compute also t_0^*

What causes the wide spread of results?

- Frozen topology?
- Rooted staggered vs Wilson?
- Different inputs, e.g. physical vs iso-QCD
- $N_f = 2 + 1 \text{ vs } N_f = 2 + 1 + 1?$

How well does decoupling of a charm quark work for ratios like $\sqrt{t_0}/f_{\pi}$, $\sqrt{t_0}/M_{\Omega}$, ...?

- For purely gluonic quantities the effect was much smaller.

[ALPHA, Phys.Lett.B 774 (2017)]

Scale Setting 2016

[M.Bruno, T.K., S.Schaefer, Phys.Rev.D 95 (2017)]

- CLS ensembles
 - 13 in total
 - ► No β = 3.85
 - Lightest: $m_{\pi} \approx$ 200 MeV @ $\beta =$ 3.55
- Compute: am_π, am_K, af_π, af_K, t₀/a²
 (O(a) improved f_X)
- Form dimensionless products
 - $\phi_2 = 8t_0 m_{\pi}^2$, proxy for light quark mass
 - $\phi_4 = 8t_0 \left(m_K^2 + \frac{1}{2} m_\pi^2 \right)$, proxy for tr[\overline{M}]
 - ► $\sqrt{t_0} f_{\pi K} = \sqrt{t_0} \frac{2}{3} \left(f_K + \frac{1}{2} f_\pi \right)$ (Mild quark-mass dependence along ϕ_4 = const. trajectory)

Use Physical inputs (pure iso-QCD):

- $m_{\pi}^{phys} = 134.8(3) \text{ MeV [FLAG '16]}$
- $m_K^{\text{phys}} = 494.2(3) \text{ MeV [FLAG '16]}$ $f_{\pi}^{\text{phys}} = 130.4(2) \text{ MeV [PDG '16]}$
- ▶ f^{phys}_ν = 156.2(7) MeV [PDG '16]
- Guess to [MeV]
- Iterate:
 - Compute $\phi_2^{\text{phys}}, \phi_4^{\text{phys}}$
 - Use derivatives to shift all quantities to mass point with $\phi_4 = \phi_4^{\text{phys}}$
 - Chiral-Continuum-Extrapolation (global fit) of $\sqrt{t_0} f_{\pi K}$ vs ϕ_2
 - From $a \to 0, \phi_2 \to \phi_2^{\text{phys}}$ extrapolation: read off $[\sqrt{t_0} f_{\pi K}]^{\text{phys}}$
 - Divide by $f_{-\nu}^{\text{phys}}$ to obtain new t_{0}^{phys}

Chiral-Continuum Extrapolations

Two types of fits

- Taylor around $\phi_2 = \phi_2^{\text{sym}}$
- *SU*(3) χ_{PT}

Update 2021

[B.Strassberger et al. PoS LATTICE2021 (2022)]

- Include correlator data from Zeuthen, Mainz and Regensburg
 - \rightarrow averaging procedure
 - 20 ensembles in total
 - including $\beta = 3.85$
 - including $m_{\pi} \approx m_{\pi}^{\text{phys}}$
- Mass derivatives not available on all ensembles

 \rightarrow global fit for $\frac{\partial X}{\partial \phi_4}\Big|_{\text{fix}}$

fixed direction

