Scale Setting in Nf=2+1 QCD with Wilson fermions from RQCD

Gunnar S. Bali, Sara Collins, Piotr Korcyl, Andreas Schäfer, Enno E. Scholz, Jakob Simeth, Wolfgang Söldner, Simon Weishäupl, Daniel Jenkins ...

RQCD Collaboration:arXiv:2211.03744

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 813942.

Hadronic physics and heavy quarks on the lattice, Dublin, 4-7th June 2024

Baryon spectrum

Determine $t_{0,ph}$ using $\lim_{a\to 0} (\sqrt{t_0} m_{\Xi})^{latt} = \sqrt{t_{0,ph}} m_{\Xi}^{ph}$.

Octet: $J^P = \frac{1}{2}^+$

Fit: N, Σ , Λ , Ξ masses

Also fit together: N, Σ , Λ , Ξ and Δ , Σ^* , Ξ^* , Ω masses. **Unstable under strong decay:** $\Delta \to N\pi$, $\Sigma^* \to \Lambda\pi$, $\Sigma\pi$ and $\Xi^* \to \Xi\pi$.

This work: for t_0 determination use the Wilson flow and the clover leaf definition of E(t).

$N_f = 2 + 1$ CLS ensembles

44 ensembles: non-perturbatively O(a) improved Wilson fermions on tree level Symanzik improved glue. Leading $O(a^2)$ errors in hadron masses.

- * High statistics: typically 6000-8000 MDUs, 1000-2000 configurations.
- * **Discretisation**: Six lattice spacings: a = 0.1 0.04 fm.
- * Finite volume: $Lm_{\pi} \gtrsim 4$ with additional smaller volumes.
- * Quark mass: $m_{\pi} = 410$ MeV down to m_{π}^{phys} .

Extrapolation of baryon multiplets

Fit form:
$$B \in \{N, \Lambda, \Sigma, \Xi\}$$

 $m_B(\mathbb{M}_{\pi}, \mathbb{M}_K, L, a) = [m_B(\mathbb{M}_{\pi}, \mathbb{M}_K, \infty, 0) + \delta m_B^{FV}(\mathbb{M}_{\pi}, \mathbb{M}_K, L)]$
 $\times [1 + a^2 (c + \overline{c} \ \overline{\mathbb{M}}^2 + \delta c_B \ \delta \mathbb{M}^2)].$

All correlations between m_B , M_π and M_K on each ensemble taken into account.

Discretisation coefficients: 6 parameters for the octet.

For $\mathrm{m}_B(\mathbb{M}_\pi,\mathbb{M}_K,\infty,0)$ and $\delta m^{FV}_B(\mathbb{M}_\pi,\mathbb{M}_K,L)$ use

 O(p³) (NNLO) SU(3) baryon ChPT with EOMS regularisation [Ellis et al.,nucl-th/9904017]: 6 parameters for the low energy constants (LECs).

Also:

Heavy baryon NNLO SU(3) ChPT [Jenkins and Manohar,Phys. Lett. B 255 (1991) 558.]: 6 LECs. Taylor expansion à la Gell-Mann-Okubo (GMO) about the symmetric point ($m_s = m_\ell$) [QCDSF,1102.5300]. NNLO leads to 11 parameters.

Baryon octet and decuplet fits using the small scale expansion, see e.g. [Martin Camalich et al.,1003.1929].

NNLO BChPT fit to the baryon octet

12 parameters to fit the 4 octet baryon masses, 125 d.o.f.

Discretisation effects are mild: around 3% from a = 0.1 fm to a = 0. Finite volume effects are small, however, including FV terms in the fit (no extra parameters) improves the $\chi^2/d.o.f$.

 $t_{0,ph}$, choice of hadronic scheme (isospin-corrected masses): $M_{\pi} = 134.8(3)$ MeV, $M_{K} = 494.2(3)$ MeV from [FLAG 16,1607.00299]. $m_{\Xi} = \frac{1}{2} (m_{\Xi^{0}} + m_{\Xi^{-}} - \delta m^{\text{QED}}) = 1316.9(3)$ MeV, $\delta m^{\text{QED}} \approx 2.7$ MeV.

Variation with cuts on the data

 $\chi^2/d.o.f$ improves with cuts on $\overline{M}^2 = (2M_K^2 + M_\pi^2)/3.$

Values of $\sqrt{8t_{0,ph}}$ obtained are consistent. Agreement of m_N with corrected expt. value improves with cuts on \overline{M}^2 .

Grey bands indicate the weighted average of the results.

Variation with the fit form

Results for $\sqrt{8t_{0,ph}}$ are very stable (m_{Ξ} tightly constrained) w.r.t. variations in continuum fit form and discretisation terms.

Poorer fit quality: HBChPT and GMO fit forms compared to EOMS BChPT, also when including the decuplet masses.

Comparison with other determinations of $\sqrt{t_{0,ph}}$

Final result: $\sqrt{t_{0,ph}} = 0.1449^{(7)}_{(9)}$ fm

 $N_f = 2 + 1$ CLS ensembles: [Bruno et al. 16,1608.08900], [CLS 21,2112.06696] (proc.), [ALPHA 23,2309.14154,2401.11546], [Hudspith et al. 24,2404.02769].

Future: more ensembles and better statistics already available.