Spectroscopy with smeared spectral densities

Antonio Smecca

Swansea University

Hadronic physics and heavy quarks on the lattice Trinity College Dublin 6th of June 2024

Challenges

To access $\rho(\omega_n)$ we face a **ill-posed inverse problem**

$$G(a\tau) = \int_{\omega_{\min}}^{\infty} d\omega \ \rho(\omega) e^{-a\omega\tau}$$

• finite L means $\rho(\omega_n)$ is a distribution of δ -functions

$$\rho_L(\omega_n) = \sum_n \frac{|\langle n|\Phi(0)|0\rangle|^2}{2\omega_n(L)} \delta(\omega - \omega_n(L)).$$

- Difficulties depend on the method chosen to tackle the inverse problem. (MEM, BG, BR, Chebychev, ...)
- $\rho(\omega_n)$ resolution depends on quality of the data and N_t .

Linear methods

i.e. Backus-Gilbert or Chebyshev polynomials approaches [Backus,Gilbert, R. Soc. '70 - Hansen,Meyer,Robaina, PRD '17 - Hansen,Lupo,Tantalo, PRD '19 - Bailas,Hashimoto,Ishikawa, Prog. Theo. Phys. '20]

Reconstruct

$$\begin{split} \rho(\omega_n) &= \sum_{\tau=1}^{\tau_{\max}} g_{\tau}(\omega_n) C(\tau), \\ \text{hence size of } g_{\tau}(\omega_n) \text{ important} \end{split}$$

• The introduction of smearing σ necessary,

problem: spectral features "washed out"

 Resolution gets progressively worse as we increase ω_n

NRQCD Υ spectrum, $N_{\tau}=128,~N_{s}=32,$

Resolution

We require $\sigma \gg \frac{1}{L}$ but also small enough to resolve spectral features

"True" $\rho(\omega_n)$ only recovered after $\lim_{L\to\infty}$ followed by $\lim_{\sigma\to 0}$.

Benefits

We can extract spectral densities and compute finite L spectrum.

Taken from 2405.01388, courtesy of Niccolò Forzano

	$aE_0 G$	$aE_0 C$	m_C	σ_G/m_C	σ_C/m_C
V	0.4099(59)	0.4083(25)	0.4098(25)	0.30	0.22

Extracted from 2405.01388, [Bennett et al.]. Spectral density and standard results compatible