Advances in Fusion and Preparing for ITER

Mar 7, 2024

Fermilab, Batavia IL

Presented by: **Raffi Nazikian** General Atomics

💠 GENERAL ATOMICS

General Atomics Advanced Technologies

2

General Atomics Campus in San Diego

General Atomics Campus in San Diego

DIII-D National Fusion Facility Operated by GA for the DOE: The Leading Magnetic Confinement Experiment in the USA

- DIII-D is the leading DOE-SC fusion facility in the US, based in San Diego
- operating since 1986
- 830 researchers worldwide
- 137 participating institutions
- Major contributor to the ITER design and informs path to advanced reactor
 serves as the US ITER simulator

- Operational Characteristics:
- episodic data ~ 10 s pulses, ~25 pulses/day, ~20 min intervals
- ~ 45 GB/pulse, ~600 TB total accumulated data

• 400x energy gain per successful collision; most collisions are not successful

• 400x energy gain per successful collision; most collisions are not successful

• 400x energy gain per successful collision; most collisions are not successful

• 400x energy gain per successful collision; most collisions are not successful

National Ignition Facility Breakthrough in Fusion is Also a Triumph of Big Science and Persistence

Lawrence Livermore National Lab

National Ignition Facility Breakthrough in Fusion is Also a Triumph of Big Science and Persistence

Lawrence Livermore National Lab

Target fabrication: General Atomics

Magnetic Fusion: Charged Particles are Confined by Magnetic Fields

Particles Streaming Along Magnetic Field Lines on the Sun

https://svs.gsfc.nasa.gov/11168

Magnetic

Field

lon

Magnetic Fusion: Charged Particles are Confined by Magnetic Fields

Particles Streaming Along Magnetic Field Lines on the Sun

https://svs.gsfc.nasa.gov/11168

Magnetic Bottle: Wrapping Magnetic Field Lines on Themselves

 Charged particles remain confined across the magnetic field

 Free streaming along the magnetic field is now a closed circuit

Tokamak: Planar Coils and Toroidal Plasma Current Lead to Simplest Closed Magnetic Surfaces

• External coils provide the primary magnetic field

 Plasma current prevents particle orbits from drifting out of confinement

https://www.energy.gov/science/doe-explainstokamaks

ITER is the First Magnetic Confinement Device Under Construction With the Goal of Producing Sustained Burning Plasmas

Goal:

- 500 MW fusion power (10x input)
- 400 sec → 3000 s
- Commence in the early 2030s

ITER is Big

DIII-D Tokamak is the Largest Magnetic Confinement Fusion Research Facility in the US

World-leading facility for support of ITER design and research planning

Advanced Simulations and Empirical Scaling Play a Vital Role in Bridging the Gap Between Present Experiments and ITER

Gyrokinetic Simulation

Central to Tokamak Path to Fusion is the Spontaneous Formation of an Edge Transport Barrier

Gyrokinetic Simulation: SUMMIT

The Problem With Tokamaks: Disruptions

C-MOD tokamak: Cambridge MA

The Problem With Tokamaks: Disruptions

C-MOD tokamak: Cambridge MA

Tile melting: JET Culham, UK

Real-time Proximity Detection and Avoidance in Tokamaks Using AI/ML

Disruption avoidance researchers DIII-D

Machine Learning for Tokamak Plasma Control is Rapidly Advancing

Reinforcement Learning at TCV: Jonas Degrave, et al., Nature 602, 414 (2022)

Google DeepMind

Disruption Avoidance Schemes are Central to Next Steps in Tokamak Reactor Development

ITER: Cadarache, France

Alternative path: Stellarators and "Hidden Symmetries"

W7-X: Greifswald, Germany

Searching for "quasi-constants" of motion

Hidden Symmetries Center Supported by Simons Foundation and the Flatiron Institute

Flatiron Institute New York NY

Jim Simons: Renaissance Technologies

Hidden Symmetries Center Supported by Simons Foundation and the Flatiron Institute

Flatiron Institute New York NY

Jim Simons: Renaissance Technologies

Industry interest in Stellarators is High

A Common Challenge for Fusion is Material Erosion and Impurity Influx Under Stationary Conditions

W mono-block & cooing channel ~10 MW/m²

Fusion Pilot Plant (FPP) ~ 50-100 MW/m²

"Divertor" Solutions Try To Minimize Heat Flux to Material Surfaces

TCV Tokamak: Lausanne, Switzerland

"Divertor" Solutions Try To Minimize Heat Flux to Material Surfaces

TCV Tokamak: Lausanne, Switzerland

Liquid metals and vapors present an interesting alternative to solid material approaches

NSTX-U: Princeton Plasma Physics Laboratory

Liquid metals and vapors present an interesting alternative to solid material approaches

Princeton Plasma Physics Laboratory

There are also transient heat flux challenges in nominally stationary plasma conditions, called ELMs

DIII-D H-mode vs L-mode: San Diego CA

MAST: Culham UK

New breakthrough: How to keep high confinement with low edge pressure (ELM free) by changing plasma shape

"Negative Triangularity" on the DIII-D tokamak

Preparing for ITER operation has many challenges We can learn from you!

"How do we remain competitive from US soil?"

Must Partner With ASCR/NSF to Leverage National Supercomputing Resources and Networks to Build World-Leading Analysis Infrastructure

Rapid data assimilation & interpretation \rightarrow

Predictive Digital Twin integrated into operations \rightarrow

Remote experimental participation capabilities

Physical Infrastructure also Required to Build Community, Create Critical Mass for US Leadership on ITER

Remote control room

Computing center

Fusion Collaboration Center in San Diego

Visualization lab

Seminar & meeting room

Hybrid work space

• 50,000 sq. ft., two levels, 100 offices, facilities

Thank you