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DIll-D National Fusion Facility Operated by GA for the DOE: The Leading Magnetic
Confinement Experiment in the USA

 DIII-D is the leading DOE-SC fusion
facility in the US, based in San Diego
- operating since 1986

- 830 researchers worldwide

- 137 participating institutions

e Major contributor to the ITER design
and informs path to advanced reactor
- serves as the US ITER simulator

e Operational Characteristics:

- episodic data ~ 10 s pulses, ~25 pulses/day, ~20 min intervals
~ 45 GB/pulse, ~600 TB total accumulated data



FUSION: Nearly Limitless Potential and Practical Challenges

* 400x energy gain per successful collision; most collisions are not successful
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FUSION: Nearly Limitless Potential and Practical Challenges

* 400x energy gain per successful collision; most collisions are not successful
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FUSION: Nearly Limitless Potential and Practical Challenges

* 400x energy gain per successful collision; most collisions are not successful
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FUSION: Nearly Limitless Potential and Practical Challenges

* 400x energy gain per successful collision; most collisions are not successful
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National Ignition Facility Breakthrough in Fusion is Also a Triumph of Big Science
and Persistence

Lawrence Livermore National Lab

Uniform X-ray Drive High Quality Implosion Alpha Heating and Ignition

“Compression Cold
heating dense DT

Target fabrication: General Atomics
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National Ignition Facility Breakthrough in Fusion is Also a Triumph of Big Science
and Persistence

Lawrence Livermore National Lab Fusion Yield

absorbed power ~ 1 MJ

Current record: 3.6 MJ yield
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Magnetic Fusion: Charged Particles are Confined by Magnetic Fields

Particles Streaming Along

Magnetic Field Lines on the Sun mv, Magnetic
Field

https://svs.gsfc.nasa.gov/11168
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Magnetic Fusion: Charged Particles are Confined by Magnetic Fields

Particles Streaming Along

Magnetic Field Lines on the Sun Magnetic

Field

No Confinement Along
Magnetic Field Lines

https://svs.gsfc.nasa.gov/11168
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Magnetic Botile:
Wrapping Magnetic Field Lines on Themselves

« Charged particles remain
confined across the
magnetic field

 Free streaming along the
magnetic field is now a
closed circuit

Single Magnetic/> —

Field Line
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Tokamak: Planar Coils and Toroidal Plasma Current Lead to Simplest
Closed Magnetic Surfaces

central solenoid

poloidal magnetic field

- External coils provide the N outer poloidal field coils
primary magnetic field ‘

* Plasma current prevents
particle orbits from drifting
out of confinement

helical magnetic field toroidal field coil

plasma electrical current toroidal magnetic field

https.//www.energy.gov/science/doe-explainstokamaks
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ITER is the First Magnetic Confinement Device Under Consiruction With
the Goal of Producing Sustained Burning Plasmas

Goal:

-\ ~—— °*500 MW fusion power (10x input)
=il ° 400 sec > 3000 s

| \\\'& | & °*Commence in the early 2030s

......
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ITER iIs Big
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Confinement Fusion Research Facility in the US

DIlI-D Tokamak is the Largest Magnetic

san Diego

World-leading facility for support of ITER design
and research planning
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Advanced Simulations and Empirical Scaling Play a Vital Role in
Bridging the Gap Between Present Experiments and ITER

ASDEX
DIII-D
JET
JFT-2M
PBX-M
o PDX
ASDEX Upgrade
ALCATOR C-Mod
COMPASS-D

JT-60U
TCV
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Gyrokinetic Simulation



Central to Tokamak Path to Fusion is the Spontaneous Formation of an
Edge Transport Barrier

Pedestal Gyrokinetic Simulation: SUMMIT
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The Problem With Tokamaks: Disruptions

Firehose instability C-MOD tokamak: Cambridge MA

/
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The Problem With Tokamaks: Disruptions

Firehose instability C-MOD tokamak: Cambridge MA

/

Tile melting: JET Culham, UK
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Real-time Proximity Detection and Avoidance in Tokamaks
Using Al/ML

Disruption avoidance researchers DIII-D Collision avoidance
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Machine Learning for Tokamak Plasma Control is Rapidly Advancing

Reinforcement Learning at TCV: Jonas Degrave, et al., Nature 602, 414 (2022)

Google DeepMind
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ITER: Cadarache, France

Disruption Avoidance Schemes are Ceniral to Next Steps in Tokamak
Reactor Development
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Alternative path: Stellarators and “Hidden Symmetries”

W7 X Grelfswad Germany

Magnetic
Field

Searching for “quasi-constants” of motion
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Hidden Symmetries Center Supported by Simons Foundation and the
Flatiron Institute

Jim Simons: Renaissance Technologies

A [ ——
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Hidden Symmetries Center Supported by Simons Foundation and the
Flatiron Institute

Flatiron Institute New York NY Jim Simons: Renaissance Technologies
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Industry interest in Stellarators is High

©@® TVPEONEENERGY
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A Common Challenge for Fusion is Material Erosion and Impurity Influx
Under Stationary Conditions

W mono-block & cooing channel ~10 MW/m? Fusion Pilot Plant (FPP) ~ 50-100 MW/m?

31



“Divertor” Solutions Try To Minimize Heat Flux to Material Surfaces

TCV Tokamak: Lausanne, Switzerland
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“Divertor” Solutions Try To Minimize Heat Flux to Material Surfaces

TCV Tokamak: Lausanne, Switzerland
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Liquid metals and vapors present an interesting alternative to solid
material approaches

NSTX-U: Princeton Plasma Physics Laboratory
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Liquid metals and vapors present an interesting alternative to solid
material approaches

Princeton Plasma Physics Laboratory

Li radiation

H recombination
radiation

First wall : ]
s A Li vapor flow

500°C to 600°C \ ) =\
e ‘ ~— Li liquid flow

plasma

Liguid Li flow in
Condensation "PS system
chamber,
400°C to 500°C

H volumetric

Evaporation — recombination

chamber,

600°C to 680°C

Zone

Inboard and outboard
vapor box divertors
(upper divertors not shown) lining wall

Heat-exchange pipes




There are also fransient heat flux challenges in nominally stationary
plasma conditions, called ELMs

DIlII-D H-mode vs L-mode: San Diego CA

Pedestal MAST: Culham UK
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New breakthrough: How to keep high confinement with low edge
pressure (ELM free) by changing plasma shape

“Negative Triangularity” on the DIIlI-D tokamak

zpe, ped ~ Pped ( kPa )
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Preparing for ITER operation has many challenges
We can learn from you!

“How do we remain competitive from US soil?”

ITER (France)
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Must Pariner With ASCR/NSF to Leverage National Supercomputing
Resources and Networks to Build World-Leading Analysis Infrastructure

Rapid data assimilation & interpretation - K

:  CAKErunsl™
o |‘;‘-,_A

B < AI/ML platform for exascale data



Physical Infrastructure also Required to Build Community, Create Critical
Mass for US Leadership on ITER

Remote control room Fusion Collaboration Center in San Diego Seminar & meeting room

e 50,000 sq. ft., two levels, 100 offices, facilities
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Thank you
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