
1

Presented by:

Raffi Nazikian

General Atomics

Fermilab, Batavia IL

Advances in Fusion and 

Preparing for ITER 

Mar 7, 2024



2

General Atomics Advanced Technologies

15,000 employees, multiple divisions
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General Atomics Campus in San Diego
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General Atomics Campus in San Diego
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DIII-D National Fusion Facility Operated by GA for the DOE: The Leading Magnetic 

Confinement Experiment in the USA

• DIII-D is the leading DOE-SC fusion 

facility in the US, based in San Diego

- operating since 1986 
- 830 researchers worldwide 

- 137 participating institutions 

• Major contributor to the ITER design 

and informs path to advanced reactor 
- serves as the US ITER simulator 

• Operational Characteristics: 

- episodic data ~ 10 s pulses, ~25 pulses/day, ~20 min intervals

~ 45 GB/pulse, ~600 TB total accumulated data 
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FUSION: Nearly Limitless Potential and Practical Challenges

Deuterium
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• 400x energy gain per successful collision; most collisions are not successful 

D + T  →   +  n
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FUSION: Nearly Limitless Potential and Practical Challenges
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• 400x energy gain per successful collision; most collisions are not successful 

6Li + n  →   +  T

D + T  →   +  n

Breeding T
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FUSION: Nearly Limitless Potential and Practical Challenges
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FUSION: Nearly Limitless Potential and Practical Challenges
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• 400x energy gain per successful collision; most collisions are not successful 

NIF

Lawson’s criterion
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National Ignition Facility Breakthrough in Fusion is Also a Triumph of Big Science 

and Persistence

Lawrence Livermore National Lab

Target fabrication: General Atomics
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National Ignition Facility Breakthrough in Fusion is Also a Triumph of Big Science 

and Persistence

Lawrence Livermore National Lab

Target fabrication: General Atomics

Fusion Yield

absorbed power ~ 1 MJ

Current record: 3.6 MJ yield
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Magnetic Fusion: Charged Particles are Confined by Magnetic Fields

https://svs.gsfc.nasa.gov/11168

Particles Streaming Along

Magnetic Field Lines on the Sun

r

r = 
mv⟂

qB
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Magnetic Fusion: Charged Particles are Confined by Magnetic Fields

https://svs.gsfc.nasa.gov/11168

Particles Streaming Along

Magnetic Field Lines on the Sun

No Confinement Along

Magnetic Field Lines
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• Charged particles remain 

confined across the 

magnetic field

• Free streaming along the 

magnetic field is now a 

closed circuit

Magnetic Bottle:

Wrapping Magnetic Field Lines on Themselves

Single Magnetic

Field Line
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• External coils provide the 

primary magnetic field

• Plasma current prevents 

particle orbits from drifting 

out of confinement

Tokamak: Planar Coils and Toroidal Plasma Current Lead to Simplest 

Closed Magnetic Surfaces

https://www.energy.gov/science/doe-explainstokamaks
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Goal: 

• 500 MW fusion power (10x input) 

• 400 sec → 3000 s

• Commence in the early 2030s

ITER is the First Magnetic Confinement Device Under Construction With 

the Goal of Producing Sustained Burning Plasmas
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ITER is Big
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ITER is Big
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DIII-D Tokamak is the Largest Magnetic

Confinement Fusion Research Facility in the US

World-leading facility for support of ITER design 

and research planning

San Diego
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DIII-D

ITER

Advanced Simulations and Empirical Scaling Play a Vital Role in 

Bridging the Gap Between Present Experiments and ITER

Gyrokinetic Simulation

ITER
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Central to Tokamak Path to Fusion is the Spontaneous Formation of an 

Edge Transport Barrier

Gyrokinetic Simulation: SUMMIT
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The Problem With Tokamaks: Disruptions

C-MOD tokamak: Cambridge MAFirehose instability
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The Problem With Tokamaks: Disruptions

C-MOD tokamak: Cambridge MAFirehose instability

Tile melting: JET Culham, UK
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Real-time Proximity Detection and Avoidance in Tokamaks 

Using AI/ML

Disruption avoidance researchers DIII-D Collision avoidance
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Machine Learning for Tokamak Plasma Control is Rapidly Advancing

Reinforcement Learning at TCV: Jonas Degrave, et al., Nature 602, 414 (2022)
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Disruption Avoidance Schemes are Central to Next Steps in Tokamak 

Reactor Development
ITER: Cadarache, France

SPARC: CFS, USA

STEP: UKAEA
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Alternative path: Stellarators and “Hidden Symmetries”

W7-X: Greifswald, Germany

Searching for “quasi-constants” of motion



28

Hidden Symmetries Center Supported by Simons Foundation and the 

Flatiron Institute

Jim Simons: Renaissance Technologies Flatiron Institute New York NY
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Hidden Symmetries Center Supported by Simons Foundation and the 

Flatiron Institute

Jim Simons: Renaissance Technologies Flatiron Institute New York NY
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Industry interest in Stellarators is High  
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A Common Challenge for Fusion is Material Erosion and Impurity Influx 

Under Stationary Conditions

W mono-block & cooing channel ~10 MW/m2 Fusion Pilot Plant (FPP) ~ 50-100 MW/m2

General Atomics
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“Divertor” Solutions Try To Minimize Heat Flux to Material Surfaces

TCV Tokamak: Lausanne, Switzerland
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“Divertor” Solutions Try To Minimize Heat Flux to Material Surfaces

TCV Tokamak: Lausanne, Switzerland
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Liquid metals and vapors present an interesting alternative to solid 

material approaches

NSTX-U: Princeton Plasma Physics Laboratory
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Liquid metals and vapors present an interesting alternative to solid 

material approaches

Princeton Plasma Physics Laboratory
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There are also transient heat flux challenges in nominally stationary 

plasma conditions, called ELMs

DIII-D H-mode vs L-mode: San Diego CA

MAST: Culham UK
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New breakthrough: How to keep high confinement with low edge 

pressure (ELM free) by changing plasma shape

“Negative Triangularity” on the DIII-D tokamak
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Preparing for ITER operation has many challenges

We can learn from you!

ITER (France)

“How do we remain competitive from US soil?” 
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Must Partner With ASCR/NSF to Leverage National Supercomputing 

Resources and Networks to Build World-Leading Analysis Infrastructure

3

9

AI/ML platform for exascale data

Predictive Digital Twin integrated into operations →

→

Remote experimental participation capabilities

→

Rapid data assimilation & interpretation →
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Physical Infrastructure also Required to Build Community, Create Critical 

Mass for US Leadership on ITER
Fusion Collaboration Center in San DiegoRemote control room

Computing center Visualization lab

Seminar & meeting room

Hybrid work space

• 50,000 sq. ft., two levels, 100 offices, facilities
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Thank you


