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Measurement of off-shell Higgs boson


 production in the ￼  decay channel


using Neural Simulation-Based Inference

H → ZZ → 4ℓ

https://indico.cern.ch/e/higgs2024
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Introduction

Off-shell  

• First evidence for production in 
2022 [ATLAS, CMS]


•Small signal, most visible in 
, due to enhanced cross-

section from -bosons in the 
decay channel and -quarks in the 
quark loop going on-shell.


H → ZZ

H → VV
V

t

2m t
2mZ

2

Off-shell Higgs signal (S) strongly interferes 
(S+I) with background (gg bkg.) and thus 

cannot be measured independently.

Interfering background

What we 
aim to 

measure

https://arxiv.org/abs/2304.01532
https://arxiv.org/abs/2202.06923


The off-shell Higgs boson
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The probability model of the off-shell Higgs boson:

p(x |μ) =
1

ν(μ) [μ ⋅ νS ⋅ pS(x) + μ ⋅ νI ⋅ pI(x) + νB ⋅ pB(x) + νNI ⋅ pNI(x)]{{ {{ {

pS(x) pB(x)

× =pI(x) 2 ⋅ Re

ggF Signal ggF Background

We aim to measure the off-shell signal strength μ =
σH→ZZ→4ℓ

obs

σH→ZZ→4ℓ
exp

NI  Non-Interfering 
backgrounds

→ν → Exp events



Previous Measurement
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ONN =
pS

pB + 0.1 ⋅ pNI

Standard Signal vs Background classification


Binned Poisson Likelihood fit is performed

tμ = − 2 ⋅ ∑
bin∈ONN

log
e−νbin(μ, ̂α̂) ⋅ νbin(μ, ̂α̂)Nbin

e−νbin(μ,α̂) ⋅ νbin(μ, α̂)Nbin



Previous Measurement

5

Standard Signal vs Background classification


Signal vs Background discriminant optimal ONLY 
when signal linearly scales with parameter.


p(x |μ)
pB(x)

= μ ⋅
pS(x)
pB(x)

+
pB(x)
pB(x)

Neyman pearson 

lemma 

ONN =
pS

pB + 0.1 ⋅ pNI

i.e. maximally optimal across the 
parameter range



Previous Measurement
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Standard Signal vs Background classification


Signal vs Background discriminant optimal ONLY 
when signal linearly scales with parameter.


But what if there is large non-linearity?  

E.g.: interference effects of off-shell Higgs boson 
production.

p(x |μ)
pB(x)

= μ ⋅
pS(x)
pB(x)

+
pB(x)
pB(x)

p(x |μ)
pB(x)

= μ ⋅
pS(x)
pB(x)

+ μ ⋅
pI(x)
pB(x)

+
pB(x)
pB(x)

Neyman pearson 

lemma 

{

What about optimally 
discriminating interference 

from background?

ONN =
pS

pB + 0.1 ⋅ pNI



Previous Measurement
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Standard Signal vs Background classification


Signal vs Background discriminant optimal ONLY 
when signal linearly scales with parameter.


But what if there is large non-linearity?  

E.g.: interference effects of off-shell Higgs boson 
production.

p(x |μ)
pB(x)

= μ ⋅
pS(x)
pB(x)

+
pB(x)
pB(x)

p(x |μ)
pB(x)

= μ ⋅
pS(x)
pB(x)

+ μ ⋅
pI(x)
pB(x)

+
pB(x)
pB(x)

Neyman pearson 

lemma 

Neyman pearson 

lemma {

What about optimally 
discriminating interference 

from background?

ONN =
pS

pB + 0.1 ⋅ pNI



Previous Measurement
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Flat NLL region implies sub-optimality 
in regions with μ ⋅ pI ≫ μ ⋅ pS

Standard Signal vs Background classification


ONN =
pS

pB + 0.1 ⋅ pNI



New Measurement

Huge sensitivity gain in 
interference rich regions 

 μ ⋅ pI(x) ≫ μ ⋅ pS(x)

Carefully trained parameterized per-event 
density ratios are now used to build the test 

statistic:

  

No fixed observable - maximal 
optimality throughout  space.


  
μ

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

Additional sensitivity from unbinned nature 
(no Poisson fits) 
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Neyman pearson lemma 

Note: we use the same pre-selections, Monte Carlo samples, background normalization, and systematic uncertainty 
model as the previously published analysis [link to paper for details]  

https://arxiv.org/abs/2304.01532


p(x |μ)
pref(x)

= μ ⋅
pS(x)

pref(x)
+ μ ⋅

pI(x)
pref(x)

+
pB(x)
pref(x)

+
pNI(x)
pref(x)

We learn everything, including 
interference effects

Exploiting the known analytical formula - we break down the parameterized ratio into simpler parts:
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 is a carefully chosen parameter-
independent hypothesis

pref

p(x |μ)
p(x | ̂μ)

=
p(x |μ)/pref(x)
p(x | ̂μ)/pref(x)

New Measurement

Carefully trained parameterized per-event 
density ratios are now used to build the test 

statistic:

  

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

Additional sensitivity from unbinned nature 
(no Poisson fits) 

Neyman pearson lemma 

No fixed observable - maximal 
optimality throughout  space.


  
μ

Huge sensitivity gain in 
interference rich regions 

 μ ⋅ pI(x) ≫ μ ⋅ pS(x)



Overview: Neural Simulation-Based Inference
Full test statistic function with nuisance parameters :α

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
Lsubs( ̂α̂)
Lsubs(α̂)

Extended 
Poisson term Constraint termsSum of event-by-event 

log-likelihood ratios
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likelihood from 
subsidiary measurements of 

the nuisance parameters 

Lsubs →
total observed eventsNobs →



Overview: Neural Simulation-Based Inference

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized per-event ratios 

sum over processes 
c = S, B, etc.

Factorized nuisance parameter -dependence:





α

gc(x |α) = ∏
m

pc(x |αm)
pc(x)

Parameter dependancies are 
factorized out (see slide 10)

parameter-
independent ratio 

Full test statistic function with nuisance parameters :α
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t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
Lsubs( ̂α̂)
Lsubs(α̂)



Overview: Neural Simulation-Based Inference

sum over processes 
c = S, B, etc.

̂s(x) =
pc

pref + pc
(x)

  x ∼ pc
S = 1

 
 

x ∼ pref

S = 0
Binary Cross-Entropy loss 

pc

pref
(x) =

̂s(x)
1.0 − ̂s(x)

Two hypothesis: 

 and pc pref

"Likelihood ratio trick"
Many examples in ATLAS - HH4b background estimation, Omnifold, etc.


Classification NN

Full test statistic function with nuisance parameters :α
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t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
Lsubs( ̂α̂)
Lsubs(α̂)

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/
https://arxiv.org/abs/2405.20041


Probability Calibration Test
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NN predicted 

MC estimate

log
p(x |μ)
pref (x)

(x)

log
Nbin(x |μ)

Nbin
ref (x) Excellent agreement!

The NN ratios are meticulously trained to be true representations of the density ratios

Does the NN output correspond to real 
probabilities?

Do the ratios capture the full un-biased 
dependence of the multi-dimensional 
feature space  ?xlog

p(x |μ)
pref (x)

(x) ↔ log
Nbin(x |μ)

Nbin
ref (x)

?

High-level multivariate observable

p(x |1.7)
p(x |1)

× p(x |1) ∼ p(x |1.7)

NN prediction

MC sample
MC sample

Excellent agreement!



Unblinded Results - Parameter scans
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Having validated the parameterized density ratios we build the test statistic scan for μoffshell

Neyman Construction, essential due to the non-linear parameterization, requires sampling pseudo-
experiments from the PDF , unlike histogram analysis which rely on Poisson bin-by-bin sampling.


Pseudo-experiments sampled using the newly developed techniques developed have been used to calculate 
the exact confidence intervals and background exclusion significance.

p(x |μ, α)

3.1x better 
exclusion 

compared to 
previous 
analysis!

2.6x better 
exclusion 
compared 
to previous 

analysis!



Conclusions and Outlook

The analysis has been combined with 
other channels like:


 1. off-shell  for 
powerful inference on  and 


2. on-shell  to give 
precise estimate on the total decay width 

 of the Higgs boson.

H → ZZ → 2ℓ2ν
μoffshell

H → ZZ → 4ℓ

ΓH

Two new papers from ATLAS open up the possibility of wide applications in ATLAS, 
CMS and beyond - potential to maximise the optimality of many analysis:


• Paper measuring the off-shell Higgs boson: [link]


• Paper with general method: [link]
Papers will be out soon, and 
current CONF note links will 
be replaced with paper links.

 NSBI

+ 

H → ZZ → 4ℓ

H → ZZ → 2ℓ2ν

The no off-shell production hypothesis is 
rejected with a significance of 3.7σ

Will's talk tomorrow will show more of the exciting new 
results from physics re-interpretations of this powerful 

new measurement
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https://cds.cern.ch/record/2916090
https://cds.cern.ch/record/2915316


Backup



Per-event analog of


standard techniques

Uncertainty Parameterization

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Factorized per-event -dependence:





with  estimated using a mix of 
NNs and analytic interpolation techniques:

α

gc(x |α) = ∏
k

pc(x |αk)
pc(x)

pc(x |αk)/pc(x)
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Factorized yield -dependence:





with  estimated using analytic 
interpolation techniques:

α

Gc(α) = ∏
k

νc(αk)
νc

νc(αk)/νc

νc(αk)
νc

=
( νc(α+

k )
νc )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( νc(α−
k )

νc )
−αk

αk < − 1

,

Available from simulations

at αk = 0, α+

k , α−
k

pc(x |αk)
pc(x)

=
( pc(x |α+

k )
pc(x) )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( pc(x |α−
k )

pc(x) )
−αk

αk < − 1

.

Density ratios trained using NNs from simulations

at αk = 0, α+

k , α−
k

Ref: HistFactory

https://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf


Impact of Systematic Uncertainties
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Compatibility Tests

Pseudo-experiments are sampled from the 
nominal ( ) and bkg-only ( ) hypothesis 
to set the bkg-exclusion limits and test the SM 

compatibility of the observed  result.

μ = 1 μ = 0

t0
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f (tμ |μ = 0, α̂obs)

Testing the background exclusion 
sensitivity (in )σ

Testing the SM compatibility of  (in )tobs
0 σ

Observed

SM 
compatibility

1.26

Expected Observed

Bkg 
Exclusion

1.3 2.5

p-value = ∫
∞

tobs
0

f (tμ=0 | 1.0) = 0.11



Where does the sensitivity come from? Not the tails
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Parameterized Observables and Unbinning
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Data/MC checks - NN outputs
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We test the robustness of the multi-dimensional NN mapping by performing 
detailed data-MC validations

The NN output is also verified on data events from a orthogonal Control 
Region phase space, ensuring robustness of the mapping function.



The "optimal" observable at μ = 0

Following plots have data-MC comparisons with  background-only histogram stacks.

Red curves depict the distribution at best fit value 

μ = 0
μ ∼ 0.9

Data/MC checks - Optimality
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