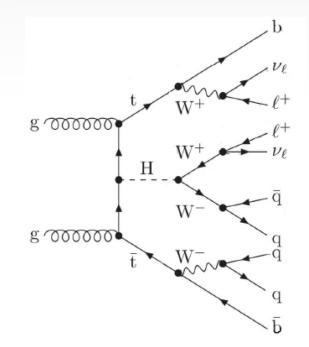


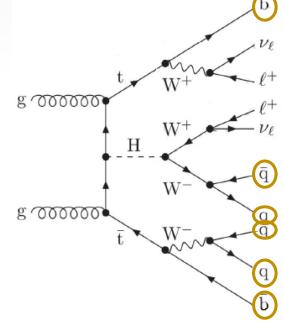
Joker talk: differential ttH production in the multilepton final state using Run 2 dataset


Angela Taliercio on behalf of the CMS collaboration

November 7 2024

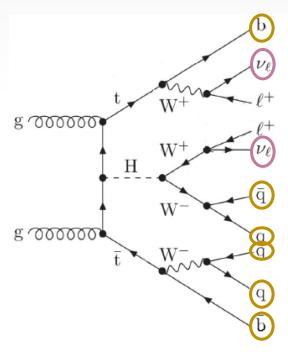
ttH multilepton: introduction

- Top Yukawa coupling
 - Top is heaviest quark. yt~1
 - Sensitive to BSM effects
- Target Higgs decay modes:
 - $\circ \quad \text{H}{\rightarrow} \text{WW} \rightarrow \text{IvIv} \ / \ \text{Ivqq}$
 - $\circ \quad \text{H}{\rightarrow} \text{ tt} \rightarrow \text{hadrons/leptons+v's}$

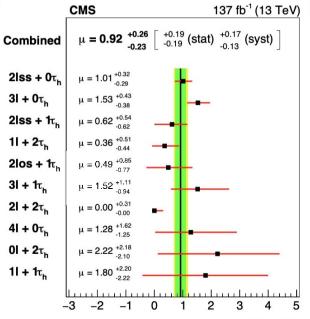


ttH multilepton: introduction

- Top Yukawa coupling
 - Top is heaviest quark. yt~1
 - Sensitive to BSM effects
- Target Higgs decay modes:
 - $\circ \quad \text{H}{\rightarrow} \text{WW} \rightarrow \text{IvIv} / \text{Ivqq}$
 - $\circ \quad \text{H}{\rightarrow} \text{ tt} \rightarrow \text{hadrons/leptons+v's}$



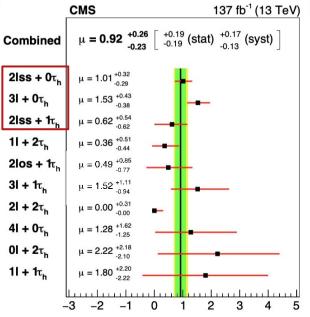
ttH multilepton: introduction


- Top Yukawa coupling
 - Top is heaviest quark. yt~1
 - Sensitive to BSM effects
- Target Higgs decay modes:
 - $\circ \quad \text{H}{\rightarrow} \text{WW} \rightarrow \text{IvIv} / \text{Ivqq}$
 - $\circ \quad H \rightarrow \tau \tau \rightarrow hadrons/leptons+v's$

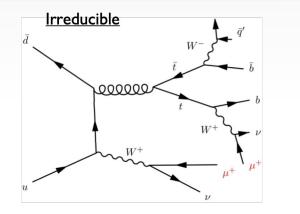
- Very crowded final state (lots of jets coming both from the Higgs and from the tops)
- Challenging final state for the presence of neutrions
 - Cannot reconstruct without ambiguity the full process

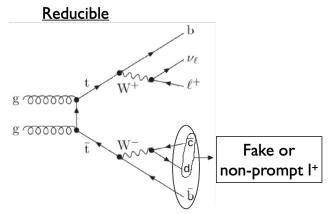
ttH multilepton: previous measurement

- Run 2 inclusive measurement (<u>HIG-19-008</u>):
 - Signal strength: 0.92 ± 0.19 (stat)+0.17-0.13 (syst)
 - Significance: 4.7σ (5.7σ exp)
 - Categorize events by number of leptons and hadronic taus
 - 3 most sensitive channels: 2lss, 3l, 2lss+1t_h
- Run 2 CP Measurement (<u>HIG-21-006</u>)



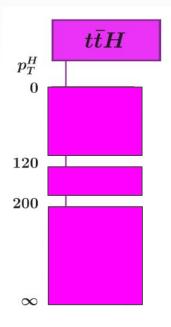
Best fit µ(ttH)


Differential ttH


- Run 2 inclusive measurement (<u>HIG-19-008</u>):
 - Signal strength: 0.92 ± 0.19 (stat)+0.17-0.13 (syst)
 - Significance: 4.7σ (5.7σ exp)
 - Categorize events by number of leptons and hadronic taus
 - 3 most sensitive channels: 2lss, 3l, 2lss+1t_h
- Run 2 CP Measurement (HIG-21-006)
- We select only the best 3 final states
- Differential measurement using full Run 2 data
 - \circ Custom Higgs p_T bins
 - mttH bins

CMS

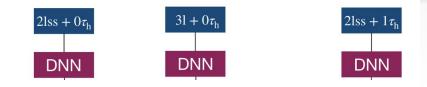
Major Backgrounds


- ttW, ttZ are dominant
- Modeled in MC, normalization left floating in fit
 - Control regions to constrain
 - Validation regions to validate modeling

- Non-prompt lepton or jet fakes a prompt lepton
- Mostly tt and W+jets in 2lss
- Estimated with data-driven methods

Analysis Strategy

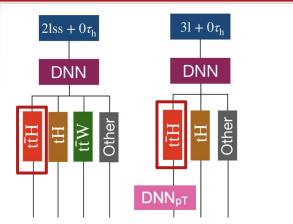
- Pick three best channels from inclusive ttH analysis to do differential measurement
 - \circ Custom Higgs p_{T} binning for optimized sensitivity (3 bins)
 - \circ Custom Higgs m_{ttH} binning (3 bins)
- Estimate the ttW, ttZ, WZ, ZZ background from control regions:
 - \circ 31 and 41 control region
- DNN multiclassifier, to maximise the sensitivity and the background modelling
 - \circ ~ Higgs \textbf{p}_{T} regression with DNN ~
- Fit all simultaneously all the classes of the DNN and the control regions

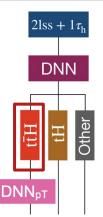


custom binning

Event Categorization & Fit Strategy

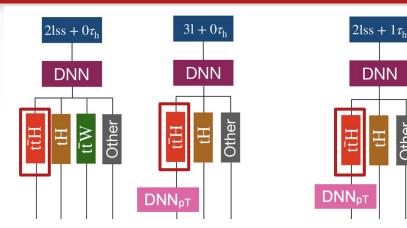
• In each channel, train a DNN Classifier to distinguish events between ttH low Higgs p_T , ttH high Higgs p_T , tH and background




Event Categorization & Fit Strategy

• In each channel, train a DNN Classifier to distinguish events between ttH low Higgs $p_{\rm T}$, ttH high Higgs $p_{\rm T}$, tH and background

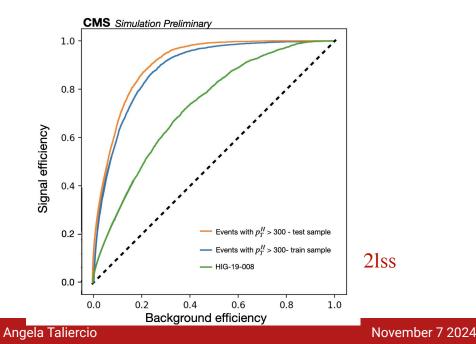
- \circ $\,$ $\,$ Train DNN for Higgs p_{T} regression
- For tH, ttW and other backgrounds
 - Split by lepton flavor, number of b jets when statistics allow

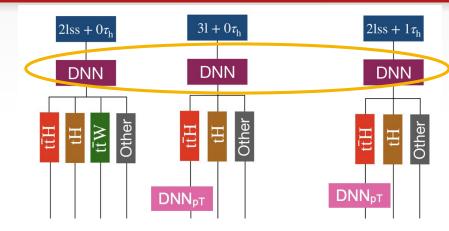


: DNN Classifier outputs two ttH scores: H p_T < 300, H p_T > 300 Ge

DNN Classifier

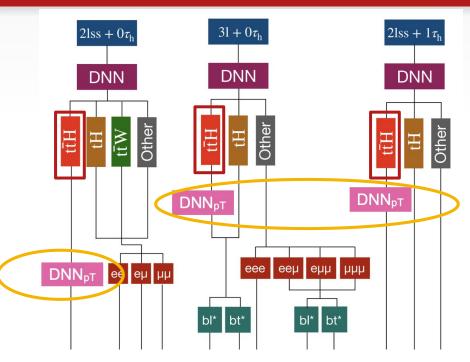
- Improved upon inclusive analysis by training • separately high and low Higgs pT events
 - BSM effects more sensitive at higher 0 Higgs pT


: DNN Classifier outputs two ttH scores: H p_{τ} < 300, H p_{τ} > 300 (


Other

DNN Classifier Performance

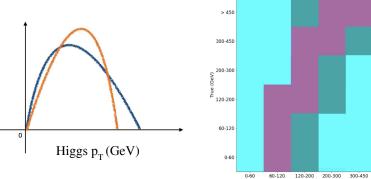
• New classifier perform significantly better at separating higher Higgs $p_{\rm T}$ & tHq signal from others



Higgs p_T Regression DNN

- Higgs p_T Regression DNN
 - New DNN developed for differential analysis

: DNN Classifier outputs two ttH scores: H p_T < 300, H p_T > 300


DNN Loss Function

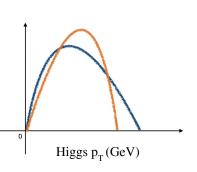
Loss Function: Quantity that DNN seeks to minimize during training

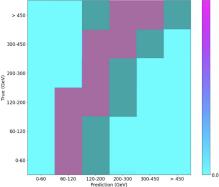
Common Choice: Mean-Squared-Error

$$L = \frac{1}{N} \sum \left((y_t - y_p)^2 \right)$$

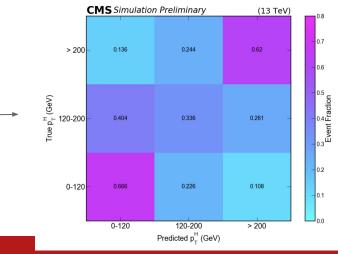
 When using standard loss functions (like MSE), predictions cluster around center of true distribution.

> 450


DNN Loss Function

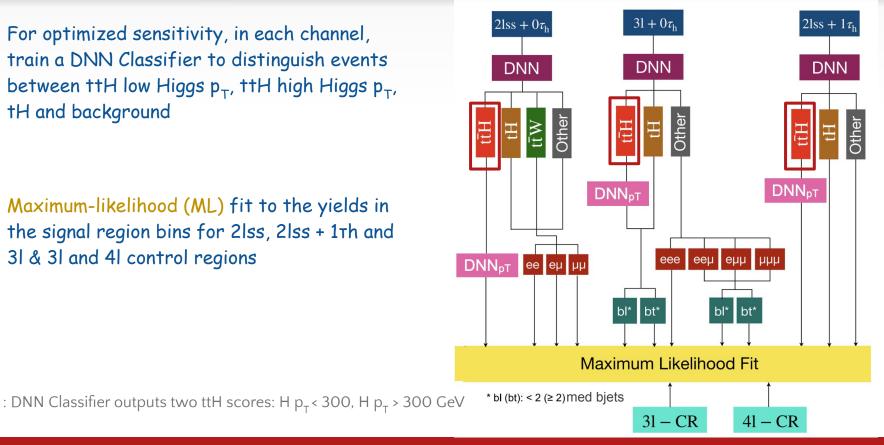

• Loss Function: Quantity that DNN seeks to minimize during training

Common Choice: Mean-Squared-Error


$$L = \frac{1}{N} \sum \left((y_t - y_p)^2 \right) \qquad \longrightarrow L = \frac{1}{N} \sum \left((y_t - y_p)^2 \right) \times \left| \left(\sigma_t^2 - \sigma_p^2 \right) \right|$$

• When using standard loss functions (like MSE), predictions cluster around center of true distribution.

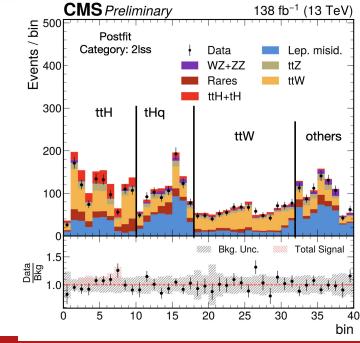
Term to penalize deviations in variance between true & prediction

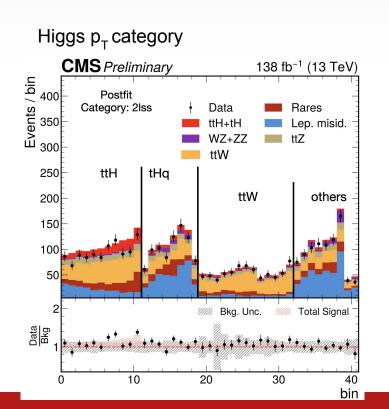


Event Categorization & Fit Strategy

For optimized sensitivity, in each channel, train a DNN Classifier to distinguish events between ttH low Higgs p_{τ} , ttH high Higgs p_{τ} , tH and background

Maximum-likelihood (ML) fit to the yields in the signal region bins for 2lss, 2lss + 1Th and 31 & 31 and 41 control regions



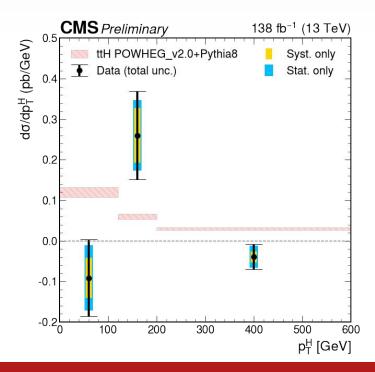


Postfit distributions

• Postfit distribution for the 2lss category for:

m_{ttH} category

November 7 2024

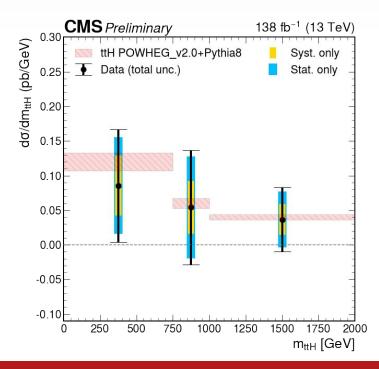


Higgs p_T Results

- We show the measurement of the cross section in
 - \circ Custom Higgs p_T binning

custom Higgs p_T binning

class	$2\ell SS + 0\tau_h$	$2\ell SS + 1\tau_h$	$3\ell + 0\tau_{\rm h}$
[] ttH_low	2×4	2×4	$(< 2 \text{ bjet med.}, \ge 2 \text{ bjet med.}) 2 \times 4$
tīH⊥high	1×4	1×4	1×4
tH	8	4	$(< 2 bjet med., \ge 2 bjet med.) 2$
bkg	9	5	(eee) 1 (eem: < 2 bjet med., ≥ 2 bjet med.) 2 (emm: < 2 bjet med., ≥ 2 bjet med.) 2 (mmm: < 2 bjet med., ≥ 2 bjet med.) 2
tīW	13	_	_
Total	42	21	21



Higgs m_{ttH}

custom mttH

- We show the measurement of the cross section in
 - \circ Custom m_{ttH} binning

class	$2\ell SS + 0\tau_h$	$2\ell SS + 1\tau_h$	$3\ell + 0\tau_{\rm h}$
ttH	6 × 3	4×3	$(< 2 \text{ bjet med.}) 2 \times 3$, $(\ge 2 \text{ bjet med.}) 2 \times 3$
tH	8	4	$(< 2 \text{ bjet med.}) \ge 2 \text{ bjet med.}) \ge 2$ (eee) 1
bkg	9	5	(eem: < 2 bjet med., ≥ 2 bjet med.) 2 (emm: < 2 bjet med., ≥ 2 bjet med.) 2
\sum			(mmm: < 2 bjet med., ≥ 2 bjet med.) 2
tŦW	13		—
Total	42	21	21

Summary

- Fist ttH differential measurement in ttH multilepton final state
- Very challenging final state large \rightarrow large multiplicity of jets, presence of neutrinos
- Multiclass DNN to categorize the events
 - \circ $\,$ DNN to regress the Higgs \boldsymbol{p}_{T}
- We measured the differential cross section as a function of:
 - \circ 3 Higgs p_T: [0,120), [120, 200), [200, inf) GeV
 - 3 m_{ttH} bins: [0,750), [750, 1000), [1000, inf) GeV

• Results are in agreement with the SM prediction