Higgs Monte Carlo Simulation

Monte Carlo event generators — why are they so important?

Herwig

Sherpa

Silvia Ferrario Ravasio

Shower Monte Carlo Event generator are the default theoretical tool to interpret collider data

Monte Carlo event generators — why are they so important?

ARE CURRENT SMC GOOD ENOUGH (FOR HIGGS PHYSICS)?

Shower Monte Carlo Event generator are the default theoretical tool to interpret collider data

A snapshot of theory uncertainties

Example: theory uncertainties in typical Vector Boson Fusion measurements

	VBF H	ggH (in VBF-enriched region)
PDF	<1%	<3%
QCD scale	<1%	2-20%
UE	<1.5%	<2-3%
Parton shower	5-15%	4-10%

M. Pellen, HXWG meeting, 2023

Silvia Ferrario Ravasio

A snapshot of theory uncertainties

Example: theory uncertainties in typical Vector Boson Fusion measurements

	VBF H	ggH (in VBF-enriched region)
PDF	<1%	<3%
QCD scale	<1%	2-20%
UE	<1.5%	<2-3%
Parton shower	5-15%	4-10%

M. Pellen, HXWG meeting, 2023

Silvia Ferrario Ravasio

A snapshot of theory uncertainties

Example: theory uncertainties in typical Vector Boson Fusion measurements

	VBF H	ggH (in VBF-enriched region)
PDF	<1%	<3%
QCD scale	<1%	2-20%
UE	<1.5%	<2-3%
Parton shower	5-15%	4-10%

M. Pellen, HXWG meeting, 2023

Silvia Ferrario Ravasio

Improving the fixed order accuracy of SMC

accuracy of the result

► For more then 2 decades the standard way to improve **showers** was to combine them with **fixed-order** calculations via a matching procedure that removes the double counting and preserves the fixed-order

Improving the fixed order accuracy of SMC

accuracy of the result

► What is the fixed-order accuracy we can reach for these processes?

> For more then 2 decades the standard way to improve **showers** was to combine them with **fixed-order** calculations via a matching procedure that removes the double counting and preserves the fixed-order

Higgs with jets

 \blacktriangleright For processes where the <u>Higgs</u> appears with <u>hard jets</u>, state of the art is NLO+PS

g 20000

Silvia Ferrario Ravasio

Fixed-order accuracy for VBF

> For processes where the <u>Higgs</u> appears with <u>hard jets</u>, state of the art is NLO+PS

Can have 2 and 3 jets at NLO via multi-jet merging [Chen, Figy, Platzer, 2109.0373]

Fixed-order accuracy for VBF

► For processes where the <u>Higgs</u> appears with <u>hard jets</u>, state of the art is **NLO+PS**

Interference effects with *HV* available in Powheg, Mg5, Sherpa, Herwig

Silvia Ferrario Ravasio

Can have 2 and 3 jets at NLO via multi-jet merging [Chen, Figy, Platzer, 2109.0373]

EW corrections in Powheg (yet to be combined with QCD)

[Jager, Scheller, 2208.00013]

Higgs with jets

► For processes where the <u>Higgs</u> appears with <u>hard jets</u>, state of the art is **NLO+PS**

Can have 0,1,2 at NLO via multijet merging, in Sherpa [Hoche, Krauss, Schonherr, 1401.7971] and Herwig [Bellm, Gieseke, Platzer 1705.06700]

Higgs with jets

► For processes where the <u>Higgs</u> appears with <u>hard jets</u>, state of the art is **NLO+PS**

1705.06700]

 m_t effects are important but not known for the 2loop amplitudes: can be capured LO reweighing [Chen, Huss, Jones, Kerner, Lang, Lindert, Zhang; 2110.06953]

Higgs (without jets)

► <u>Higgs</u> production (plus <u>bosons</u>) and $H \rightarrow b\bar{b}$ decay is known at NNLO+PS

► NNLO event generators used in experiments:

➤ Other NNLO+PS methods exist: UNNLOPS [Hoeche,Li,Prestel, 1405.3607], NNLOPS with sector showers [Cambell, Hoche, Li, Preuss, Skands, 2108.07133] Silvia Ferrario Ravasio Higgs 2024

NNLO+PS with MiNNLO and Geneva

The idea behind both methods is to use ingredients from analytic resummation at $N^{3}LL$ for an observable such as 0-jettines or p_T^H to cast the FO calculation in a "partonshower" like way before the matching

Both methods have **recently** been "refined" for ggF

NNLO+PS with MiNNLO and Geneva

q'

Silvia Ferrario Ravasio

Higgs 2024

Loop-induced processes with an Higgs

NNLO, but due to their size are being computed at NLO+PS

Combined with "standard" **MINNLO** for $q\bar{q} \rightarrow ZZ \rightarrow 4\ell$ [Buonocore et al, 2108.05337]

► <u>Loop-induced</u> processes (where $m_t \rightarrow \infty$ cannot be used) obtained from gluon fusion are formally

 $gg \rightarrow 4\ell$ in the Powheg Box

Is matching all we need?

VBF: suppression of radiation at large angles

[Hoche, Mrenna, Payne, Preuss, Skands, 2106.10987]

 η_{j_3}

What shall we aim for in a shower?

Silvia Ferrario Ravasio

Recipe to get <u>NLL showers</u> known, at least in Dreyer, Hamilton, Monni, Salam, Soyez '20])

► Recipe to get <u>NLL showers</u> known, at least in theory ([Catani, Webber, Marchesini '91; Dasgupta,

Dreyer, Hamilton, Monni, Salam, Soyez '20])

This enabled the <u>PanScales</u> to devise the <u>first</u> showers with <u>general</u> NLL accuracy for

$$e^+e^- \rightarrow j_1 j_2$$

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, 2002.11114

van Beekveld, <u>SFR</u>, Soto-Ontoso, Salam, Soyez, Verheyen, 2205.02237, + Hamilton 2207.09467

...with subleading colour (2011.10054) and spin correlations (2103.16526, 2111.01161)

Recipe to get <u>NLL showers</u> known, at least in theory ([Catani, Webber, Marchesini '91; Dasgupta,

 $pp \rightarrow colour \ singlet$

DIS & VBF

van Beekveld, SFR, 2305.08645

NLL showers

- Dreyer, Hamilton, Monni, Salam, Soyez '20])
- with subleading colour (2011.10054) and spin correlations (2103.16526, 2111.01161)

> <u>Alaric</u> (Sherpa) NLL shower for $e^+e^- \rightarrow j_1j_2$ [Hoche, Krauss, Reichelt, 2404.14360], with mass effects [Assi, Hoche, 2307.00728], recently extended to generic process in hadron-hadron collisions [Hoche, Krauss, Reichelt, 2404.14360]

Recipe to get <u>NLL showers</u> known, at least in theory ([Catani, Webber, Marchesini '91; Dasgupta,

> <u>PanScales</u> devised the <u>first</u> showers with <u>general</u> NLL accuracy for processes with two coloured partons, including $H \rightarrow gg$ (2002.11114), ggF (2205.02237, 2207.09467) and VBF (2305.08645),

NLL showers

- Dreyer, Hamilton, Monni, Salam, Soyez '20])
- with subleading colour (2011.10054) and spin correlations (2103.16526, 2111.01161)
- > <u>Alaric</u> (Sherpa) NLL shower for $e^+e^- \rightarrow j_1j_2$ (2404.14360), with mass effects (2404.14360), supports LO multi-jet merging.
- ► <u>Apollo</u> (Pythia) NLL shower for $e^+e^- \rightarrow j_1j_2$ [2403.19452, Preuss]
- <u>FHP</u> (soon in Herwig) NLL shower for $e^+e^- \rightarrow j_1j_2$ [Forshaw, Holguin, Platzer, 2003.064001

► Recipe to get <u>NLL showers</u> known, at least in theory ([Catani, Webber, Marchesini '91; Dasgupta,

> <u>PanScales</u> devised the <u>first</u> showers with <u>general</u> NLL accuracy for processes with two coloured partons, including $H \rightarrow gg$ (2002.11114), ggF (2205.02237, 2207.09467) and VBF (2305.08645),

(2307.00728), recently extended to generic process in hadron-hadron collisions

<u>Deductor</u> NLL accuracy shown at least for $e^+e^- \rightarrow j_1 j_2$ [Nagy, Soper 2011.04777]

Matching with NLL showers

Status of matching with NLL showers:

- PanScales [Hamilton et al, <u>2301.09645</u>] and J for colour-singlet decay into 2 jets
- Alaric [Hoche et al, 2404.14360] has LO mul singlet

► PanScales [Hamilton et al, <u>2301.09645</u>] and Apollo [Preuss, 2403.19452] have NLO matching

► Alaric [Hoche et al, 2404.14360] has LO multi-jet merging for e^+e^- and $pp \rightarrow$ jets w/wo colour

Matching with NLL showers

Status of matching with NLL showers:

- PanScales [Hamilton et al, <u>2301.09645</u>] and J for colour-singlet decay into 2 jets
- Alaric [Hoche et al, 2404.14360] has LO mul singlet

What is so difficult about getting NLO for generic process?

Find a nice NLO subtraction with kinematic mappings and counterterms compatible with the emission kernels of the shower!

Can we simply use an **existing external generator** <u>not taylored to the</u> <u>shower</u>, such as the **Powheg Box** (and **MiNNLO**) and **Geneva**?

► PanScales [Hamilton et al, <u>2301.09645</u>] and Apollo [Preuss, 2403.19452] have NLO matching

► Alaric [Hoche et al, 2404.14360] has LO multi-jet merging for e^+e^- and $pp \rightarrow$ jets w/wo colour

Higgs 2024

Silvia Ferrario Ravasio

Higgs 2024

Silvia Ferrario Ravasio

Higgs 2024

The identification of the relation between critical NNLL analytic resummation ingredients and their **parton-shower counterparts** is the recipe to build a NNLL shower

► <u>NLO matching</u>

 $\Sigma_{\text{NNLL}} = (1 + \alpha_s C) \exp \left(Lg_{\text{LL}}(\alpha_s L) + g_{\text{NLL}}(\alpha_s L) + \dots \right)$

The identification of the relation between critical NNLL analytic resummation ingredients and their **parton-shower counterparts** is the recipe to build a NNLL shower

► <u>NLO matching</u>

Soft-radiation pattern at <u>NLO</u>

- → NNLL accuracy for non-global observables such as central jet vetoes (important e.g. for ggF vs VBF discrimination); so far applied only to $e^+e^- \rightarrow j_1 j_2$ [S.F.R., Hamilton, Karlberg, Salam, Scyboz, Soyez <u>2307.11142</u>]
- \rightarrow NNLL \rightarrow NLL sizeable reduction of the scale uncertainty

 $\Sigma_{\text{NNLL}} = (1 + \alpha_s C) \exp \left(Lg_{\text{LL}}(\alpha_s L) + g_{\text{NLL}}(\alpha_s L) + \dots \right)$

The identification of the relation between critical NNLL analytic resummation ingredients and their **parton-shower counterparts** is the recipe to build a NNLL shower

► <u>NLO matching</u>

► <u>Soft-radiation</u> pattern at <u>NLO</u>

► <u>Collinear-radiation</u> pattern at <u>NLO</u>

Soft-collinear-radiation pattern at NNLO

Silvia Ferrario Ravasio

their **parton-shower counterparts** is the recipe to build a NNLL shower

► <u>NLO matching</u>

► <u>Soft-radiation</u> pattern at <u>NLO</u>

► <u>Collinear-radiation</u> pattern at <u>NLO</u>

Soft-collinear-radiation pattern at NNLO

With this, we can build the first shower for $e^+e^- \rightarrow j_1j_2$, and $H \rightarrow gg$, with NNLL accuracy for global event shapes [van Beekveld, Dasgupta, El-Menoufi, SFR et al, 2406.02661]

Silvia Ferrario Ravasio

The identification of the relation between critical NNLL analytic resummation ingredients and

What to do

NLL showers

Dreyer, Hamilton, Monni, Salam, Soyez '20])

➤ This enabled the <u>PanScales</u> to devise the <u>first</u> showers with <u>general</u> NLL accuracy for

$$e^+e^- \rightarrow j_1 j_2$$

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, 2002.11114

...with subleading colour (2011.10054) and spin correlations (2103.16526, 2111.01161)

Hamilton 2207.09467

Recipe to get <u>NLL showers</u> known, at least in theory ([Catani, Webber, Marchesini '91; Dasgupta,

 $pp \rightarrow colour \ singlet$

van Beekveld, <u>SFR</u>, Soto-Ontoso, Salam, Soyez, Verheyen, 2205.02237, +

2305.08645

