

Outline

In the Standard Model, the Yukawa couplings between the Higgs and the fermions are the only source of flavour symmetry breaking

$$\mathcal{L}_{SM} = \mathcal{L}_{flavour\ symm} + \mathcal{L}_{Yukawa}$$

Currently, experimental limits on Higgs signal strengths allow for large deviations from SM in some Higgs-fermion couplings

Question: model-independently, how large can these be without their effects being ruled out by other (particularly flavour) observables?

The Standard Model Effective Field Theory

Approximate the effects of all possible heavy particles by writing down all possible new interactions between SM particles

$$\mathcal{L}_{\text{SMEFT}} = \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

Operators are suppressed by BSM scale

Different classes of operators built from SM fields...

$$X^{3}$$
 H^{6} $H^{4}D^{2}$ $\psi \bar{\psi} H^{2}D$ $\psi \bar{\psi} H^{3}$ $\psi \bar{\psi} XH$ $X^{2}H^{2}$ $\bar{\psi}^{2} \psi^{2}$

$$X = B_{\mu\nu}, G_{\mu\nu}^A, W_{\mu\nu}^I$$

$$\psi = Q, u, d, L, e$$

Parameters of the theory are contained in the Wilson coefficients

Higgs — fermion couplings in the SMEFT

In SM, one-to-one relationship between masses and couplings

Beyond SM, e.g. in SMEFT, that relationship is broken

Beyond SM, e.g. in SMEF1, that relationship is broken
$$m_{\psi}^{ij} = \frac{v}{\sqrt{2}} \left(Y_{\psi}^{ij} - \frac{v^2}{2} C_{\psi H}^{ij} \right)$$

$$g_{H\psi}^{ij} = \frac{1}{\sqrt{2}} \left(Y_{\psi}^{ij} (1 + v^2 c_{H,\mathrm{kin}}) - \frac{3}{2} v^2 C_{\psi H}^{ij} \right)$$
 dimension 6 operator
$$c_{H\,\mathrm{kin}} = c_{H\,\square} - \frac{1}{v} c_{H\,\square}$$

Flavour off-diagonal Higgs couplings

In the SM, Higgs couplings are flavour-diagonal by construction

In SMEFT...
$$g_{H\psi}^{ij} = \frac{1}{v} m_{\psi}^{ij} (1 + v^2 c_{H,\mathrm{kin}}) - \frac{v^2}{\sqrt{2}} C_{\psi H}^{ij} \qquad \text{Diagonalising } m_{ij} \text{ doesn't necessarily diagonalise } g_{H\psi}^{ij}$$

But: bounds on (flavour changing) Higgs decays are weak

Best limits usually indirect, low energy

$$\overline{S}$$
 h
 $K^0 - \overline{K}^0$ mixing

Exceptions: couplings involving t or τ

$$BR(t \to Hu) < 0.019 \% \ BR(t \to Hc) < 0.043 \%$$
 (CMS)
$$\begin{cases} O(10^{-17}) \\ O(10^{-15}) \end{cases}$$

$$BR(h \to \mu \tau) < 0.15 \%$$

 $BR(h \to e \tau) < 0.22 \%$ (CMS) c.f. SM $B(h \to \mu \mu) = 0.02 \%$

from N. Selimovic's slides

$$|\kappa_c| < 1.2$$
 $|\kappa_s| < 13$
 $|\kappa_u| < 260$
 $|\kappa_d| < 156$

HL-LHC @ 95% CL

Connecting Higgs couplings with other phenomena

Any contribution to Higgs couplings breaks SM flavour group

Under $U(3)^5$ flavour symmetry group,

$$(H^{\dagger}H)\bar{\psi}_L\psi_R H \sim \bar{3}_L \otimes 3_R$$

$$\frac{dC_i}{d\log\mu} = \frac{1}{16\pi^2} \sum_{j} (\gamma_{ij}) C_j$$

 γ_{ij} is an $N \times N$ matrix dependent only on SM parameters

[(Alonso), Jenkins, Manohar, Trott, 2013]

Indirect constraints from other operators?

Flavour selection rules

Zeroes can be understood from SM flavour structure

 $\mathcal{L}_{SM} = \mathcal{L}_{flavour\ symm} + \mathcal{L}_{Yukawa} \qquad \text{breaking in a controlled way}$

[Machado, SR, Sutherland, JHEP 03 (2023) 226]

Dipoles:

/ Gauge terms: global flavour symmetry

$$SU(3)_Q \times SU(3)_u \times SU(3)_d \times SU(3)_L \times SU(3)_e$$

Operators can only generate each other at loop level if:

a) They are of the same irrep under $SU(3)^5$ OR

b) There are factors of SM Yukawas in the RGEs

Higgs couplings: $O_{\psi H} = (H^{\dagger}H)\bar{\psi}_L\psi_R H \sim \bar{3}_L \otimes 3_R$

e.g.

 $O_{\psi X} = \bar{\psi}_L \psi_R XH \sim \bar{3}_L \otimes 3_R$

 $O_{quqd}^{(1)} = (\bar{Q}u)(\bar{Q}d) \sim \bar{3}_{Q} \otimes 3_{u} \otimes \bar{3}_{Q} \otimes 3_{d}$ $\sim Y_{u}^{\dagger} \sim O_{dH}$

Only dipole operators, e.g. O_{dW} etc

Only important for large Yukawas (y_t)

Helicity and non-renormalisation

Label amplitudes by number of legs n and total helicity $\sum h$

All SM amplitudes (*) lie in the cone defined by

(*)exceptions suppressed by small Yukawas

$$\left| \sum h \right| \le n-4$$

From any operator, can only run into operators on or within its cone at one loop

→Yukawa-like operators: Higgsfermion couplings Alonso, Jenkins, Manohar 1409.0868 Cheung, Shen 1505.01844

Overall: few connections

e.g. Dipoles → Higgs-fermion couplings BUT Higgs-fermion couplings ₩ dipoles

Only operator that $O_{\psi H}$ runs into:

Not well constrained, lose flavour information

Beyond the SMEFT

UV models which can generate modified Higgs couplings will also generate correlated effects in other SMEFT operators & flavour and collider physics

A pair of vector-like fermions

Erdelyi, Grober, Selimovic 2410.08272

Constraints from FCNCs, and CKM unitarity
Also EWPTs, Higgs physics, direct searches
see N. Selimović's talk yesterday!

2HDM with Spontaneous Flavour Violation

Giannakopoulou, Meade, Valli 2410.05236

Strongest flavour constraints from K mixing Also direct collider constraints for new Higgs bosons

Summary & outlook

- Modified Higgs-fermion couplings occupy a special place in SMEFT parameter space
- Due to flavour and helicity structure, few model-independent connections to other (e.g. better measured) observables
- Model-building opportunities to identify correlated observables, experimental targets

Backup

Future of Higgs couplings

Projected precision (%):

FCC Snowmass report, 2203.06520

Collider	HL-LHC	$FCC-ee_{240\rightarrow 365}$	FCC-ee	FCC-INT	FCC-INT
			+ HL-LHC		+ HL-LHC
Int. Lumi (ab^{-1})	3	5 + 0.2 + 1.5	_	30	_
Years	10	3 + 1 + 4	_	25	_
$g_{ m Hbb}~(\%)$	5.1	0.69	0.64	0.48	0.48
$g_{ m Hcc}~(\%)$	\mathbf{SM}	1.3	1.3	0.96	0.96
$g_{ ext{H} au au}$ $(\%)$	1.9	0.74	0.66	0.49	0.46
$g_{ m H\mu\mu} \ (\%)$	4.4	8.9	3.9	0.43	0.43
$a_{\text{H}+}$ (%)	3.4	_	3.1	1.0	0.95

FCC-ee matters most {
FCC-hh matters most {

In the SMEFT at dim 6, each of these decays is modified by a single operator:

$$5: \psi^2 H^3 + \mathrm{h.c.}$$
 $Q_{eH} \quad (H^\dagger H)(\bar{l}_p e_r H)$
 $Q_{uH} \quad (H^\dagger H)(\bar{q}_p u_r \widetilde{H})$
 $Q_{dH} \quad (H^\dagger H)(\bar{q}_p d_r H)$

These operators can be generated at tree level in some models, e.g. 2HDM

==> test of the Yukawa sector