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The	Higgs	boson	portrait
Many	properties	of	the	Higgs	boson	have	been	precisely	measured	with	Run2	LHC	data
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The	Higgs	boson	portrait

ATLAS
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p
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Higgs	boson	mass	known	
with	O(100)	MeV	precision	
from	H→4l	and	H→𝛄𝛄
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Higgs	boson	width	known	O(2-3)	MeV	
precision	from	on-shell	and	off-shell		
measurements	in	H→ZZ	decays

Probed	several	Higgs	boson	couplings	
…	chasing	Yukawa	interactions	with	

2nd	fermion	generation
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The	Higgs	boson	potential

• The	scalar	sector	is	a	cornerstone	of	the	SM	and	is	not	yet	fully	established	experimentally

• BEH	mechanism:	the	Higgs	field	is	a	complex	doublet	invariant	under	SU(2)	weak	isospin	symmetry

• The	Higgs	potential	is	given	by																																																																

• Spontaneous	breaking	of	the	EW	symmetry	(EWSB)	originates	a	VEV	≠	0

• After	EWSB	→	the	ground	state	is	degenerate	under	SU(2)	transformations

VEV = v =
μ

λ
μ = m2

H /2
• Expanding	the	potential	around	then	VEV V(H) =

1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

• Properties	of	the	scalar	sector	is	controlled	by	λ	→	rules	the	shape	of	the	Higgs	potential

• The	parameter	λ	is	a	known	value	in	the	SM	theory	given	by λ =
m2

H

2v2
≈

1
8

≈ 0.13
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How	can	we	measure	the	self-coupling?

V(H) =
1
2

m2
HH2 + λvH3 +

1
4

λH4 −
λ
4

v4

Mass	term	measured	with	O(100)	MeV	precision

H,	mH
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1
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λ
4

v4

Trilinear	coupling

H
H

HλHHH
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• It	can	be	directly	probed	via	the	non-resonant	production	of	HH	pairs

• Direct	measurements	are	theoretically	robust	but	experimentally	very	
challenging	because	HH	production	is	an	rare	process	

• HH	production	cross	section	is	about	1000	x	smaller	than	single-H	

Direct	measurements

Mass	term	measured	with	O(100)	MeV	precision
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• Direct	measurements	are	theoretically	robust	but	experimentally	very	
challenging	because	HH	production	is	an	rare	process	

• HH	production	cross	section	is	about	1000	x	smaller	than	single-H	

Direct	measurements

HH

H H

Quartic	coupling

• Extremely	rare	→	out	of	reach	for	HL-LHC

• Serves	as	additional	probe	for	BSM

Mass	term	measured	with	O(100)	MeV	precision
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HH	production	at	the	LHC

• Total	HH	production	cross	section	is	about	1000	x	smaller	than	single-H	

• HH	pairs	produced	via	different	mechanisms	→	ggHH,	VBF-HH,	VHH,	and	ttHH	in	analogy	with	single-H	production

• Cross-section	for	each	mode	can	be	precisely	parametrised	as	a	function	of	kλ	=	λ/λSM	

• Main	production	is	gluon-fusion	who	drive	the	λHHH		measurement

σggHH(kλ = 1) = 34.13 (30.77) fb at s = 13.6 (13) TeV

NNLO-QCD	FT-approx	+	mtop	uncertainty	

• Two	diagrams	@LO	with	similar	magnitude	showing	with	
large	destructive	interference

gluon-fusion	production	(ggHH)

• Value	of	the	self-coupling	modifies	both	total	and	differential	
cross	sections	→	dσ/dmHH	strongly	depends	on	kλ



 
Higgs	boson	self-coupling	via	non-resonant	HH07/11/24 5

HH	production	at	the	LHC

• Total	HH	production	cross	section	is	about	1000	x	smaller	than	single-H	

• Cross-section	for	each	mode	can	be	precisely	parametrised	as	a	function	of	kλ	=	λ/λSM	

• Main	production	is	gluon-fusion	who	drive	the	λHHH		measurement

σggHH(kλ = 1) = 34.13 (30.77) fb at s = 13.6 (13) TeV

NNLO-QCD	FT-approx	+	mtop	uncertainty	

• Two	diagrams	@LO	with	similar	magnitude	showing	with	
large	destructive	interference

gluon-fusion	production	(ggHH)

• Value	of	the	self-coupling	modifies	both	total	and	differential	
cross	sections	→	dσ/dmHH	strongly	depends	on	kλ

JHEP06(2019)066

• HH	pairs	produced	via	different	mechanisms	→	ggHH,	VBF-HH,	VHH,	and	ttHH	in	analogy	with	single-H	production

https://doi.org/10.1007/JHEP06(2019)066
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HH	production	at	the	LHC

• Total	HH	production	cross	section	is	about	1000	x	smaller	than	single-H	

• Cross-section	for	each	mode	can	be	precisely	parametrised	as	a	function	of	kλ	=	λ/λSM	

• VBF-HH	production	cross	section	is	10	x	smaller	than	ggHH	

σvbfHH(kλ = 1) = 1.87 (1.69) fb at s = 13.6 (13) TeV

N3LO	QCD	+	NLO	EW

• Three	diagrams	contribute	at	LO:	sensitive	to	kλ	and	k2V

vector	boson	fusion	(VBF-HH)

• VBF-HH	sensitive	to	the	self-coupling	but	it	represents	a	unique	
probe	for	HHVV	interactions	(k2V)

• HH	pairs	produced	via	different	mechanisms	→	ggHH,	VBF-HH,	VHH,	and	ttHH	in	analogy	with	single-H	production

kλ	dependence

k2V	dependence

Eur.Phys.J. C77 (2017) no.7, 481

• VBF-HH	with	k2V=1	beyond	the	LHC	reach	due	to	its	small	x-sec

https://link.springer.com/article/10.1140/epjc/s10052-017-5037-9
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HH	final	state	signatures	

• Large	set	of	final	states	due	to	rich	Higgs	boson	decay	signatures

• Branching	ratios	favour	hadronic	signatures:	H→bb,	H→𝛕h𝛕h	,	etc

• S/B	favours	instead	leptonic	final	states
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Published	results	based	on	“full”	Run2	data

• Many	final	states	already	covered	by	ATLAS	and	CMS	experiments	

Broad	experimental	programme	

• Note:	a	parallel	rich	program	of	searches	for	new	resonances	
decaying	to	HH	exists	and	won’t	be	covered	by	this	talk	
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Published	results	based	on	“full”	Run2	data

Sensitivity	ranking

• Sensitivity	driven	by	three	leading	channels	→	4b,	bb𝛕𝛕,	and	bb𝛄𝛄	
• Multi-lepton	searches	follow	in	sensitivity	covering	several	possible	
decay	configurations:	bbVV,	𝛕𝛕VV,	4V,	and	4𝛕	

• Very	rare	decay	modes	are	also	explored	like	H→𝛄𝛄VV	and	H→𝛄𝛄𝛕𝛕
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HH	→	4b:	high	BR	but	low	S/B

Resolved	HH→4b

• Signal	region:	four	b-jets	in	central	region	from	b-jet	triggers	
• Key	features:	hadronic	backgrounds	(QCD,	top)	needs	to	be	
highly	rejected	and	controlled,	with	novel	ML-techniques,	from	
data	at	O(%)	level

PRD 108 (2023) 052003
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3.9	(7.8)	x	SM	

ATLAS:	95%	CL	on	μHH	is	
5.3	(8.1)	x	SM	
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HH	→	4b:	high	BR	but	low	S/B

Boosted	HH→4b

• Signal	region:	high	pT	region	where	H→bb	decay	products	are	
contained	in	a	single	large-R	jet	

• Key	features:	S/B	enhanced	via	powerful	ML	H→bb	taggers,	
bkg	estimate	is	data-driven,	statistically	limited	analysis

PLB.2024.139007
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HH	→	bb𝛕𝛕:	mid	BR	and	 	good	S/B≈

• Signal	regions	explore	hadronic	and	semi-leptonic	final	states	(μ𝛕h,	e𝛕h,	and	𝛕h𝛕h)	≈	90%	of	HH→bb𝛕𝛕	expected	events

• Event	categories	based	on	𝛕𝛕	decay	modes,	production	mode	(ggHH,	VBF-HH),	boost	of	H→bb	(CMS),	and	mHH	(ATLAS)

• Irreducible	backgrounds	from	simulation

• Top-backgrounds:	ttbar,	single-top,	etc
• Z(𝛕𝛕)+b-jets	from	simulation	+	corrections	
from	Z	→	μμ	in	data

• Signal	extraction	from	a	fit	to	a	BDT/DNN	
discriminant	trained	in	each	event	category

1− 0.8182− 0.6364− 0.4545− 0.2727− 0.0909− 0.09090.27270.45450.63640.8182 1
SMBDT

1

10

210

310

410

510

610

Ev
en

ts
 / 

bi
n

ggF HH x 200
VBF HH x 200
Data 

=2.2)µHH (
Top-quark

 fakeshadτ →Jet 
Z + (bb,bc,cc)

)t fakes (thadτ →Jet 
Other
Single Higgs
Uncertainty
Pre-fit background

ATLAS
-1 = 13 TeV, 140 fbs

, 2 b-tagshadτhadτ

 350 GeV≥ 
HH

ggF SR, m

1 2 3 4 5 6 7 8 9 10 11
BDT score bin

0.5
1

1.5

D
at

a/
Pr

ed
.

1

10

210

310

410

510

610

710

Ev
en

ts

Data                           
Background (post-fit)      
Uncertainty (post-fit)       

(r = 3.33, 95% CL) ggF+VBFHH

Drell-Yan Single H 
          tt Others   

QCD                 

CMS 

 = 1tκ = λκ
 = 12Vκ = Vκ

 (13 TeV)-1 (all channels), 138 fbττbb

6− 5− 4− 3− 2− 1−
)B(S/

10
Pre-fit expected log

0.6
0.8
1.0
1.2
1.4

D
at

a 
/ B

kg
.

𝛕h𝛕h	only

all	categories	

• Mostly	from	mis-identified	𝛕h	in	QCD					
multi-jet	and	W(lv)+jets	events

• Sensitivity	driven	by	𝛕h𝛕h	category PhysRevD.110.032012

PLB.2022.137531

• Reducible	backgrounds	estimated	from	data

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.032012
http://dx.doi.org/10.1016/j.physletb.2022.137531
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HH	→	bb𝛕𝛕:	mid	BR	and	 	good	S/B≈

• Signal	regions	explore	hadronic	and	semi-leptonic	final	states	(μ𝛕h,	e𝛕h,	and	𝛕h𝛕h)	≈	90%	of	HH→bb𝛕𝛕	expected	events

• Event	categories	based	on	𝛕𝛕	decay	modes,	production	mode	(ggHH,	VBF-HH),	boost	of	H→bb	(CMS),	and	mHH	(ATLAS)
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                          68% expected    
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CMS 

 = 1tκ = λκ
 = 12Vκ = Vκ

 (13 TeV)-1, 138 fbττbb

CMS:	95%	CL	on	μHH	is	3.3	(5.2)	x	SM

PhysRevD.110.032012

PLB.2022.137531

ATLAS:	95%	CL	on	μHH	is	5.9	(3.3)	x	SM	
• Top-backgrounds:	ttbar,	single-top,	etc
• Z(𝛕𝛕)+b-jets	from	simulation	+	corrections	
from	Z	→	μμ	in	data

• Signal	extraction	from	a	fit	to	a	BDT/DNN	
discriminant	trained	in	each	event	category

• Mostly	from	mis-identified	𝛕h	in	QCD					
multi-jet	and	W(lv)+jets	events

• Sensitivity	driven	by	𝛕h𝛕h	category

• Reducible	backgrounds	estimated	from	data

• Irreducible	backgrounds	from	simulation

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.032012
http://dx.doi.org/10.1016/j.physletb.2022.137531
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HH	→	bb𝛄𝛄:	low	BR	but	best	S/B

• The	HH→bb𝛄𝛄	is	a	rare	decay	channel	(BR	≈	0.3%)	but	provides	the	best	purity	(S/B)	among	HH	signatures

• Exclusive	event	categories	designed	based	on	mHH	(ATLAS)	,	production	mode	(CMS),	and	signal	purity	

• Signal	purity	enhanced	by	using	BDT	
discriminants	featuring	event	kinematics	and		
resolution	of	jets	and	photons	(CMS)

• Main	backgrounds	from	𝛄𝛄	/	𝛄+jets	&	single-H	

• Rejection	of	ttH	via	hadronic	W	and	top	
tagging	(ATLAS)	or	ttH	BDT	killer	(CMS)

• Signal	extracted	via	a	fit	to	m𝛄𝛄	(ATLAS)	
and	m𝛄𝛄+mbb	(CMS)	distributions

• Statistically	limited	analysis!

0

5

10

15

20

25

30

S/
(S

+B
) W

ei
gh

te
d 

Ev
en

ts
 / 

( 1
 G

eV
 )

Data
HH + H + B fit
H + B component
B component

σ1 ±
σ2 ±

CMS  (13 TeV)-1137 fb

S/(S+B) weighted
All Categoriesbbγγ→HH

 = 125 GeVHm

100 110 120 130 140 150 160 170 180

 (GeV)γγm

10−

5−

0

5

10

H + B component subtracted

JHEP01(2024)066 JHEP03(2021)257

ATLAS:	95%	CL	on	μHH	is	4.0	(5.0)	x	SM	

CMS:	95%	CL	on	μHH	is	8.4	(5.5)	x	SM

https://link.springer.com/article/10.1007/JHEP01(2024)066
http://dx.doi.org/10.1007/JHEP03(2021)257
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CMS Preliminary
 = 12Vκ = Vκ = tκ = λκ

 (13 TeV)-1138 fb

10

HH	combination:	pp→HH	cross-section	kλ=1

• Observed	and	expected	95%	CL	upper	limits	on	μHH	=	σ(pp→HH)/σSM(kλ=1)	with	full	Run2	luminosity

PhysRevLett.133.101801

• New	CMS	result	that	supersedes	
previous	Run2	combinations	and	
provides	more	interpretations		

ATLAS:	95%	CL	on	μHH	is	2.9	(2.4)	x		SM CMS:	95%	CL	on	μHH	is	3.4	(2.5)	x		SM

https://link.aps.org/doi/10.1103/PhysRevLett.133.101801
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HH	combination:	pp→HH	cross-section	kλ=1

• Observed	and	expected	95%	CL	upper	limits	on	μHH	=	σ(pp→HH)/σSM(kλ=1)	with	full	Run2	luminosity

PhysRevLett.133.101801

• New	CMS	result	that	supersedes	
previous	Run2	combinations	and	
provides	more	interpretations		

• Similar	sensitivity	between	ATLAS	
and	CMS	but	different	hierarchy	in	
the	analyses	performance	

ATLAS:	95%	CL	on	μHH	is	2.9	(2.4)	x		SM

• Results	still	statistically	limited

• However	background	modelling	and	
theoretical	uncertainties	on	σggHH	
have	a	quite	relevant	impact	
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CMS:	95%	CL	on	μHH	is	3.4	(2.5)	x		SM

https://link.aps.org/doi/10.1103/PhysRevLett.133.101801
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HH	combination:	self-coupling

11

ATLAS:	-1.2	(-1.6)	<	kλ	<	7.2	(7.2)	
at	95%	CL	from	Log(L)

PhysRevLett.133.101801

• Progressively	closing	the	
allowed	region	for	anomalies	
in	Higgs	self-coupling

• Combination	improves	
significantly	the	kλ-constraint	
power	of	individual	analysis
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 = 1tκ  = 12Vκ = Vκ

 (13 TeV)-1138 fb

CMS:	-1.4	(1.0)	<	kλ	<	7.0	(7.2)	
from	95%	CL	UL	on	σ/σSM

https://link.aps.org/doi/10.1103/PhysRevLett.133.101801
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HH	combination:	self-coupling

11

CMS:	-1.4	(1.0)	<	kλ	<	7.0	(7.2)	
from	95%	CL	UL	on	σ/σSM

ATLAS:	-1.2	(-1.6)	<	kλ	<	7.2	(7.2)	
at	95%	CL	from	Log(L)

PhysRevLett.133.101801

• Progressively	closing	the	
allowed	region	for	anomalies	
in	Higgs	self-coupling

• Resolved	signatures	are	
powerful	for	kλ	<	0	and	kλ	>	2

• Combination	improves	
significantly	the	kλ-constraint	
power	of	individual	analysis

• Boosted	signatures	enhance	
the	sensitivity	for	kλ	around	
the	SM

• Hardest	region	corresponds	
to	kλ	in	[4,7]

https://link.aps.org/doi/10.1103/PhysRevLett.133.101801


 
Higgs	boson	self-coupling	via	non-resonant	HH07/11/24

HH	combination:	HHH	and	HHVV	interactions

12

• Event	categories	targeting	ggHH	and	VBF-HH	modes	are	complementary	→	allow	to	measure	simultaneously	kλ	and	k2V

PhysRevLett.133.101801

8− 6− 4− 2− 0 2 4 6 8 10 12
λκ
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3.02Vκ

 (13 TeV)-1138 fb
Observed             )       σ68.3% CL (1
Expected             )      σ95.4% CL (2
Best fit                )σ99.99994% CL (5

CMS Preliminary

 = 1Vκ = tκ

ATLAS:	0.6	<	k2V	<	1.5	(7.2)	at	95%	CL CMS:	0.7	<	k2V	<	1.4	(7.2)	at	95%	CL

• Both	ATLAS	(CMS)	largely	
exclude	the	hypothesis	of	k2V	=	0	
at	about	4	(6.5)	σ	

• k2V	mostly	constrained	by	the	
boosted	VBF	HH→4b	
PLB.2024.139007
PhysRevLett.131.041803

• Complementary	role	played	by	
different	analyses	to	constrain	
at	best	the	2D	parameter	space

https://link.aps.org/doi/10.1103/PhysRevLett.133.101801
https://doi.org/10.1016/j.physletb.2024.139007
https://doi.org/10.1103/PhysRevLett.131.041803
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HH	combination:	HEFT	interpretation	

13

• Parametrising	BSM	physics	in	HH	solely	with	coupling	modifiers	(kλ,	k2V,	kt,	kV)	has	limitations

• The	“Higgs	Effective	Field	Theory”	(HEFT)	provides	a	complete	basis	for	anomalous	interactions	in	single-H	and	HH

• Five	HEFT	operators	modifies	the	dynamics	of	ggHH	process	@	LO:	ctth	⇔kt,	cgghh,	chhh	⇔	kλ,	cgghh,	ctthh	(c2)

PhysRevLett.133.101801

No	significant	deviations	from	the	SM	hypothesis	have	been	observed		…	no	indirect	hints	of	new	physics

https://link.aps.org/doi/10.1103/PhysRevLett.133.101801
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Single-H	+	HH	combination

14

• Single-H	analyses	used	as	an	indirect	precision	tool	for	λHHH	through	NLO	effects

• Both	single-H	inclusive	x-sec	(ggH,	VBF,	VH,	ttH)	and	differential	distributions	sensitive	to	λHHH	

• Simultaneous	fit	across	STXS	single-H	measurements	and	direct	searches	for	HH	is	performed JHEP 1612, 080 (2016)

EPJ C (2017) 77 887

https://doi.org/10.1007/JHEP12(2016)080
https://doi.org/10.1140/epjc/s10052-016-4227-1
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• Single-H	analyses	used	as	an	indirect	precision	tool	for	λHHH	through	NLO	effects

• Both	single-H	inclusive	x-sec	(ggH,	VBF,	VH,	ttH)	and	differential	distributions	sensitive	to	λHHH	
JHEP 1612, 080 (2016)

EPJ C (2017) 77 887
• Simultaneous	fit	across	STXS	single-H	measurements	and	direct	searches	for	HH	is	performed
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arXiv.2407.13554

For	(kV,k2V)	fixed	→	degeneracy	with	kt	solved	by	single-H

https://doi.org/10.1007/JHEP12(2016)080
https://doi.org/10.1140/epjc/s10052-016-4227-1
https://doi.org/10.48550/arXiv.2407.13554
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For	(kV,k2V)	fixed	→	degeneracy	with	kt	solved	by	single-H

PLB2023.137745

Degeneracy	of	kλ	with	kV	and	kf	in	single-H	solved	by	direct	HH	searches

JHEP 1612, 080 (2016)

EPJ C (2017) 77 887

https://doi.org/10.48550/arXiv.2407.13554
https://doi.org/10.1016/j.physletb.2023.137745
https://doi.org/10.1007/JHEP12(2016)080
https://doi.org/10.1140/epjc/s10052-016-4227-1
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Search	for	HHH→6b	at	13	TeV

• First	constraints	on	Higgs	quartic	(k4)	gauge	coupling	exploring	HHH→6b

• Leading	mode	for	non-resonant	production	of	HHH	is	gluon-fusion

k4 kλ kλ

HHH	also	sensitive	to	kλ

σ(gg-HHH)	at	NNLO-QCD	is	0.079	fb	@	13	TeV

• Signal	region	has	6	b-jet,	control	regions	with	either	5	or	4	b-jet

• Signal	purity	improved	via	a	DNN	based	on	
selected	jet	kinematic	features

• Higgs	candidates	are	constructed	via	a	mass-based	pairing	
algorithm

• Background	estimate		is	data-driven	predicting	
yields	in	each	DNN	bin	from	(5b,4b)

• Signal	extraction	via	a	simultaneous	fit	to	
DNN	across	5b	and	6b

At	95%	CL	no	phase-space	within	
unitary	bound	is	excluded		

95%	CL	UL	on	μHHH	is	<	750	x	SM

-230	<	k4	<	240	at	95%	CL	for	kλ	=	1	
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Improved	triggers	for	HH	→	4b	and	HH→bb𝛕h𝛕h
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• Run3	will	at	least	triple	the	size	of	pp-collision	data	set	→	already	≈	180	fb-1	collected	at	13.6	TeV

• Both	ATLAS	and	CMS	introduced	several	improvements	that	will	impact	their	HH	program:	hadronic	triggers,	b-jet	and	𝛕h	tagging,	
jet	energy	resolution,	boosted	H→	bb	tagging	+	mass	reconstruction,	etc.

AT
L-

C
O

M
-D

A
Q

-2
02

3-
10

0

https://doi.org/10.48550/arXiv.2403.16134
https://twiki.cern.ch/twiki/pub/AtlasPublic/TauTriggerPublicResults/ATL-COM-DAQ-2023-100-a.pdf


 
Higgs	boson	self-coupling	via	non-resonant	HH07/11/24

0

0.2

0.4

0.6

0.8

1

1.2

Tr
ig

ge
r e

ffi
ci

en
cy

 = 78.4%)ττbb→(HHεAll triggers: 
 = 58.4%)ττbb→(HHε-triggers: τRun 3 
 = 54.1%)ττbb→(HHε-triggers: τRun 2 

 = 52.7%)ττbb→(HHε4 jets (2 b-tagged): 

300 400 500 600 700 800 900 1000
 [GeV]Truth

HHm

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

R
at

io
 to

 R
un

 2

ATLAS Simulation
Preliminary

 = 13.6 TeVs
hτhτ=1, bbλκ

Offline selection:
|<2.5, truth-matchedη>25 GeV, |vis

T
 p0τ

|<2.5, truth-matchedη>20 GeV, |vis
T

 p1τ
|<2.5, truth-matchedη>20 GeV, |

T
2 b-jets, p

Run3	prospects	from	ATLAS	and	CMS

16

Improved	triggers	for	HH	→	4b	and	HH→bb𝛕h𝛕h

arXiv.2403.16134

200 300 400 500 600 700 800 900 1000
 [GeV]Reco

HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ig

ge
r E

ffi
ci

en
cy  4b→HH 

 = 1λκ

| < 2.5η > 30 GeV, |
T

 4 jets, p≥

Run 3 2023 HH parking

Run 3 2022 HH standard

Run 2 2018 standard

 = 13, 13.6 TeVsCMS     Simulation

Large	
gain	in

	accep
tance	

w.r.t.	R
un2	

trigger
s	over	

the	ful
l	mHH	spe

ctrum

FT
A

G
-2

02
3-

01
C

M
S-

D
P-

20
24

-0
66

Improvements	in	b-tagging	

More	in
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• Run3	will	at	least	triple	the	size	of	pp-collision	data	set	→	already	≈	180	fb-1	collected	at	13.6	TeV

• Both	ATLAS	and	CMS	introduced	several	improvements	that	will	impact	their	HH	program:	hadronic	triggers,	b-jet	and	𝛕h	tagging,	
jet	energy	resolution,	boosted	H→	bb	tagging	+	mass	reconstruction,	etc.
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• Run3	will	at	least	triple	the	size	of	pp-collision	data	set	→	already	≈	180	fb-1	collected	at	13.6	TeV

• Both	ATLAS	and	CMS	introduced	several	improvements	that	will	impact	their	HH	program:	hadronic	triggers,	b-jet	and	𝛕h	tagging,	
jet	energy	resolution,	boosted	H→	bb	tagging	+	mass	reconstruction,	etc.

Jet	energy	resolution

• ML-based	pT	calibration	improves	by	
5-20%	the	resolution	of	uds/g	jets	
and	even-more	for	b/c	jets
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Boosted	H→bb	tagging	+	mass	regression

• ATLAS:	transformer-based	GNN	for	H→bb(cc)	tagging	and	mH	regression
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• CMS:	ParT	for	tagging	and	mH	regression	→	improved	performance	and	
larger	number	of	boosted	signatures	including	H→VV→4q
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• Di-Higgs	production	is	a	key	probe	of	the	EWSB	mechanism	
• Allows	to	access	the	Higgs-boson	self-coupling	with	LHC	data	→	probe	the	shape	of	the	Higgs	field	potential	
• Allows	to	access	another	rare	quartic	gauge	coupling	→	HHVV	interactions
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• ATLAS	and	CMS	performed	a	large	set	of	analysis	with	Run2	data	covering:

• Most	relevant	decay	channels	in	terms	of	branching	ratio	and	expected	S/B
• The	two	main	HH	production	modes:	gluon-fusion	(leader	in	kλ)	and	VBF	(leader	in	k2V)
• HH	and	single-H	analyses	are	combined	to	maximise	the	sensitivity	to	self-coupling	(λHHH)	and	EFT	operators	
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• Allows	to	access	the	Higgs-boson	self-coupling	with	LHC	data	→	probe	the	shape	of	the	Higgs	field	potential	
• Allows	to	access	another	rare	quartic	gauge	coupling	→	HHVV	interactions

• Run3	prospects:

• The	expected	95%	CL	UL	on	μHH	is	about	2.5	x	SM	per	experiment	with	Run2

• Assuming	that	results	will	scale	with	luminosity	→	1.5	x	SM	per	experiment	(Run2+Run3)

• Combining	ATLAS	+	CMS	results	→	1	x	SM	(Run2+Run3)	→	2σ	significance	

• Analysis	improvements	in	Run3	might	be	significant		
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HL-LHC	most	recent	projections
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• Both	ATLAS	and	CMS	recently	updated	HL-LHC	projections	for	HH	measurements	on	the	latest	Run2	results	(140	fb-1)

• Projection	for	ATLAS	HH→bb𝛕𝛕	analysis	only

• Current	analysis	has	expected	significance	of	2σ	at	3	ab-1

• Baseline	analysis	with	recommended	theory	and	
experimental	uncertainties	→	3.5σ	significance	at	3	ab-1	
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• Current	projections	based	on	luminosity	extrapolation	of	Run2	in	different	scenarios	for	systematic	uncertainties	

• Projection	for	the	combination	of	CMS	bb𝛕𝛕,	bb𝛄𝛄,	4b,	
multi-lepton,	and	bbWW	

• Scenario	2	of	systematic	uncertainties	scaling	them	by	 	
until	reaching	a	floor	CYRM-2019-007.221

L

Expect	4σ	significance	at	3	ab-1

More	in	Alex's	talk More	in	Angela's	talk

http://cds.cern.ch/record/2910850
https://doi.org/10.23731/CYRM-2019-007.221
https://indico.cern.ch/event/1391236/timetable/#48-prospects-for-single-and-di
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ATLAS	HH→4b	resolved
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ATLAS	VBF	HH→4b	boosted
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CMS	HH→4b	boosted
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Differences	between	6b	and	5b	w.r.t.	5b	vs	4b	vs	each	input	variables	of	DNN

Non-closures	are	used	to	perturbate	the	input	features	and	assess	a	variation	
on	the	final	DNN	template	→	10	possible	variations

Finally	a	pruning	procedure	is	allowed	to	only	retain	some	principal	components	
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5b, no extrapolation

Uncertainty source
Relative impact of systematic uncertainties [%]

SM-like TRSM non-resonant TRSM resonant Heavy resonance

All uncertainties 24 20–46 33–42 24–53

Experimental 22 20–45 33–41 24–53

Detector response 7.4 6.6–14 16–24 4.1–15

Luminosity and pileup <1 <1 <1 <1

Flavor tagging 3.2 2.8–5 6.9–8.8 1.5–5.6

Jet reconstruction 2.7 2.3–6.5 3.6–7.1 1.0–6.3

Trigger efficiency 2.0 1.8–3.5 6–10 1.4–4.2

Background modeling 16 14–36 18–30 20–45

Theoretical 1.5 <1 <1 <1

MC statistical <1 <1 <1 <1
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