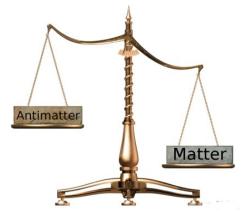
Probing CP violation in the Higgs sector

Henning Bahl


Higgs 2024, Uppsala, 7.11.24

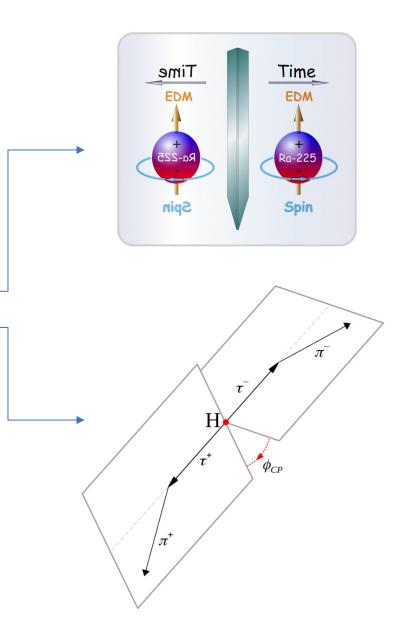
CP violation in the Higgs sector

- new sources of CP violation are necessary to explain the baryon asymmetry of the Universe
- one possibility: CP violation in the Higgs sector.
- SM prediction: Higgs is (almost) CP-even

How can we probe CP violation in the Higgs sector?

Higgs CP measurements

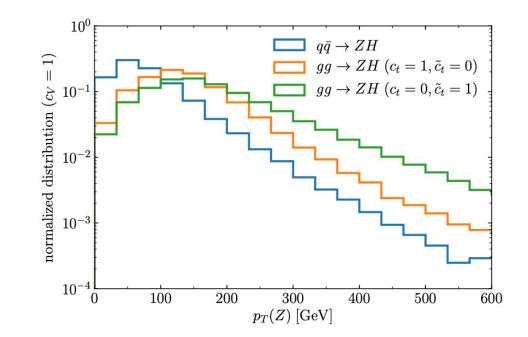
general amplitude structure for CP measurements:

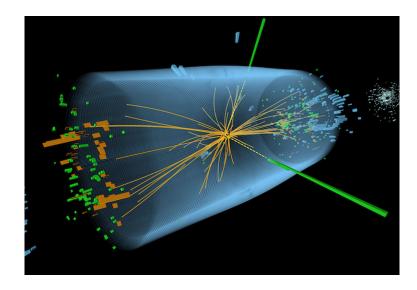

$$|\mathcal{M}|^{2} = c_{\text{even}}^{2} |\mathcal{M}^{\text{CP-even}}|^{2} + 2c_{\text{even}}c_{\text{odd}}\text{Re}[\mathcal{M}^{\text{CP-even}}\mathcal{M}^{\text{CP-odd}^{*}}] + c_{\text{odd}}^{2} |\mathcal{M}^{\text{CP-odd}}|^{2}$$

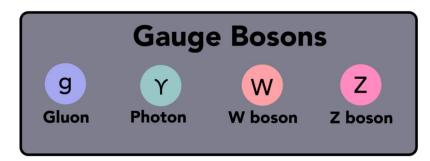
interference

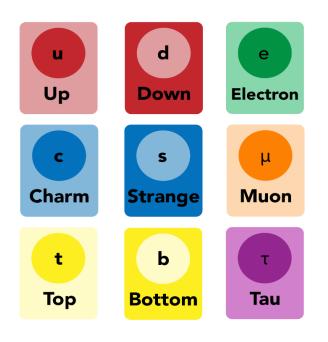
CP can be tested either

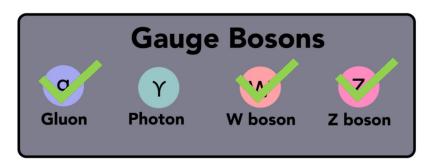
- directly by constraining interference term \rightarrow CP-odd observables
- indirectly by distinguishing $|\mathcal{M}^{CP-even}|^2$ from $|\mathcal{M}^{CP-odd}|^2 \rightarrow CP$ -even observables
- multivariate analyses mixing CP-odd and CP-even observables

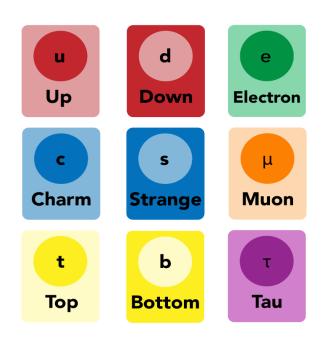

CP-odd observables

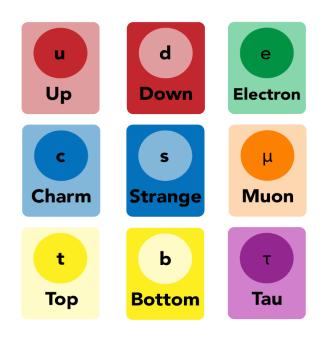

- unambiguous markers for CP violation
- examples:
 - EDM measurements,
 - decay angle in $H \rightarrow \tau^+ \tau^-$
- need at least four independent four vectors (e.g. momenta or polarization vectors)
- can be difficult experimentally


CP-even observables

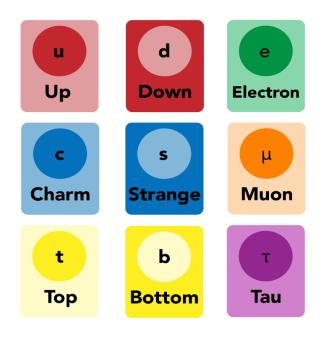

- many rate and kinematic measurements are indirectly sensitive
- examples:
 - gluon fusion rate,
 - $gg \rightarrow ZH p_T^Z$ shape
- deviations from SM need not be due to CP violation



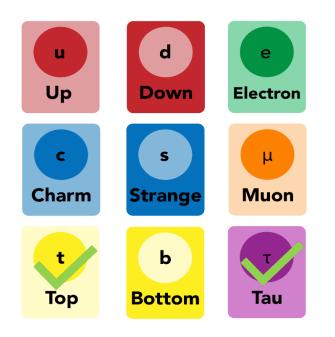

Probing Higgs CPV at the LHC

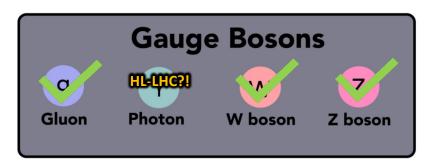

Fermions

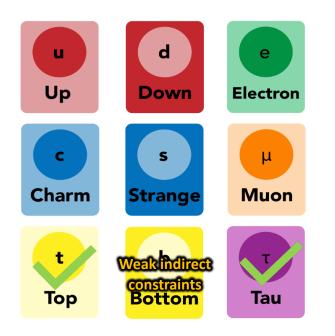
• CP structure of *HVV* interactions is comparably well-constrained

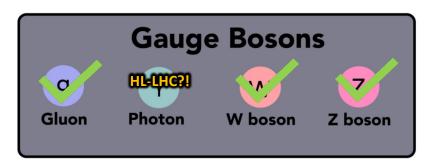


Fermions

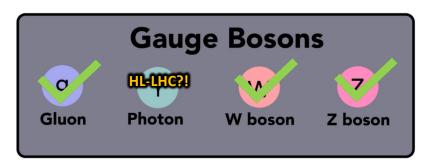

• CP structure of *HVV* interactions is comparably well-constrained




- CP structure of *HVV* interactions is comparably well-constrained
- the CP structure of the $Hf\bar{f}$ interactions is far less known
- most BSM theories predict largest CP violation in $Hf\bar{f}$ couplings



- CP structure of *HVV* interactions is comparably well-constrained
- the CP structure of the $Hf\bar{f}$ interactions is far less known
- most BSM theories predict largest CP violation in $Hf\bar{f}$ couplings



- CP structure of *HVV* interactions is comparably wellconstrained
- the CP structure of the $Hf\bar{f}$ interactions is far less known
- most BSM theories predict largest CP violation in $Hf\bar{f}$ couplings

u Ideas? Up	d Ideas? Down	e Ideas? Electron
c Ideas? Charm	s Ideas? Strange	ldeas? Muon
t Top	Weakindirect constraints Bottom	Tau

- CP structure of *HVV* interactions is comparably well-constrained
- the CP structure of the $Hf\bar{f}$ interactions is far less known
- most BSM theories predict largest CP violation in $Hf\bar{f}$ couplings

Fermions

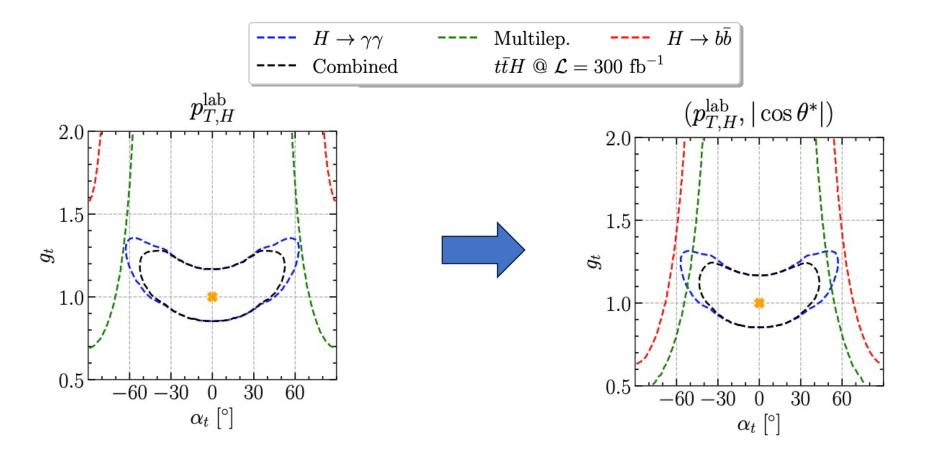
- CP structure of *HVV* interactions is comparably well-constrained
- the CP structure of the $Hf\bar{f}$ interactions is far less known
- most BSM theories predict largest CP violation in $Hf\bar{f}$ couplings

exploit kinematic constraints, rate measurements, and CP-odd observables to tighten constraints

$t\bar{t}H - kinematic constraints$ [HB et al., 2406.03950]

\rightarrow See Marco's talk for more details!

CP-odd observables experimentally very challenging



- combine decay channels/experiments via CP-sensitive STXS extension (so far binning in $p_{T,H}$)
- check 2D combinations of 11 CP-sensitive observables
- best combinations: $p_{T,H} + b_2^{\text{lab}}$, $\Delta \eta_{t\bar{t}}$, $|\cos\theta^*|$

observable	definition	frame		
$p_{T,H}$	-	lab, $t\bar{t}, t\bar{t}H$		
$\Delta\eta_{tar{t}}$	$ \eta_t-\eta_{ar t} $	lab, $H, t\bar{t}H$		
$\Delta \phi_{tar{t}}$	$ \phi_t-\phi_{ar t} $	lab, $H, t\bar{t}H$		
$m_{tar{t}}$	$(p_t + p_{\bar{t}})^2$	frame-invariant		
$m_{tar{t}H}$	$(p_t+p_{ar t}+p_H)^2$	frame-invariant		
$ \cos heta^* $	$rac{ m{p}_t\cdotm{n} }{ m{p}_t \cdot m{n} }$	$tar{t}$		
b_1	$rac{(oldsymbol{p}_t { imes} oldsymbol{n}) \cdot (oldsymbol{p}_{ar{t}} { imes} oldsymbol{n})}{p_{T,t} p_{T,ar{t}}}$	all		
b_2	$rac{(oldsymbol{p}_t imes oldsymbol{n}) \cdot (oldsymbol{p}_{ar{t}} imes oldsymbol{n})}{ oldsymbol{p}_t \ oldsymbol{p}_{ar{t}} }$	all		
b_3	$rac{p_t^x \ p_{ar t}^x}{p_{T,t} p_{T,ar t}}$	all		
b_4	$rac{p_t^z \hspace{0.1in} p_{ar{t}}^z}{ m{p}_t \hspace{0.1in} m{p}_{ar{t}} }$	all		
ϕ_C	$\arccos\left(\frac{ (\boldsymbol{p}_{p_1} \times \boldsymbol{p}_{p_2}) \cdot (\boldsymbol{p}_t \times \boldsymbol{p}_{\bar{t}}) }{ \boldsymbol{p}_{p_1} \times \boldsymbol{p}_{p_2} \boldsymbol{p}_t \times \boldsymbol{p}_{\bar{t}} }\right)$	H		

CP-sensitive STXS for $t\bar{t}H$

 $\mathcal{L}_{t-\mathrm{Yuk}} = \frac{g_t y_t^{\mathrm{SM}}}{\sqrt{2}} \bar{t} \left(\cos \alpha_t + i \gamma_5 \sin \alpha_t \right) t H$

 $\rightarrow 2^{nd}$ dimension provides important information, performance close to BDT

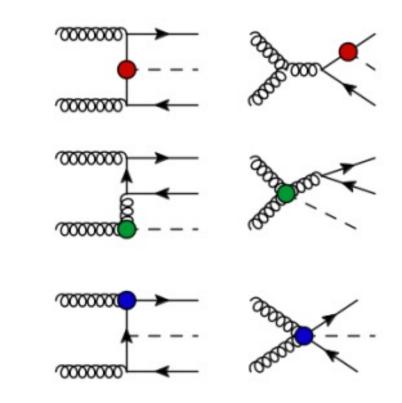
"Global" ttH CPV fit

Most studies concentrate on CP character of a single Higgs coupling, e.g.

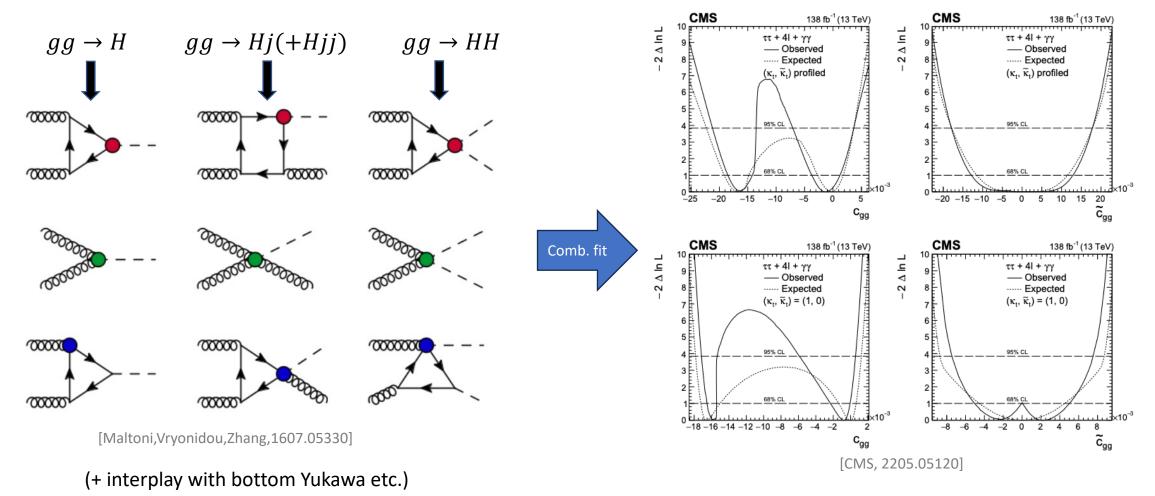
$$\mathcal{L}_{\text{top-Yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}} \bar{t} (c_t + i\gamma_5 \tilde{c}_t) t H$$

in SMEFT, this coupling is generated by rewriting:

•
$$O_{t\phi} = (\phi^{\dagger}\phi)(\bar{Q}t\tilde{\phi})$$


further "Higgs" operators which contribute to e.g. $t\bar{t}H$:

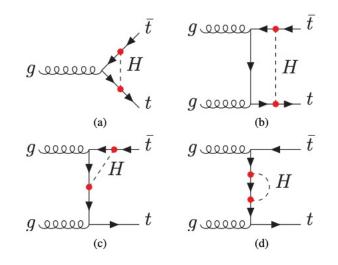
$$O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^A t)\tilde{\phi}G^A_{\mu\nu}$$

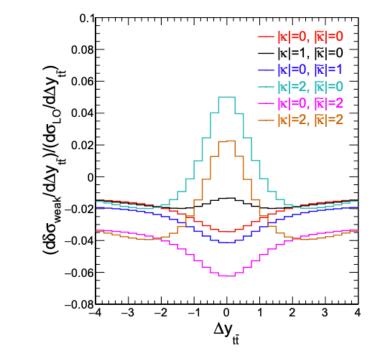

$$O_{\phi G} = (\phi^{\dagger} \phi) (G^{A}_{\mu\nu} G^{A\mu\nu})$$
$$O_{\phi \tilde{G}} = (\phi^{\dagger} \phi) (G^{A}_{\mu\nu} \tilde{G}^{A\mu\nu})$$

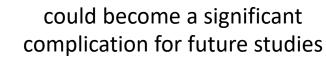
 \rightarrow interplay of the different CPV operators across different channels

[Maltoni,Vryonidou,Zhang,1607.05330]

$t\bar{t}H$: correlation with other Higgs channels

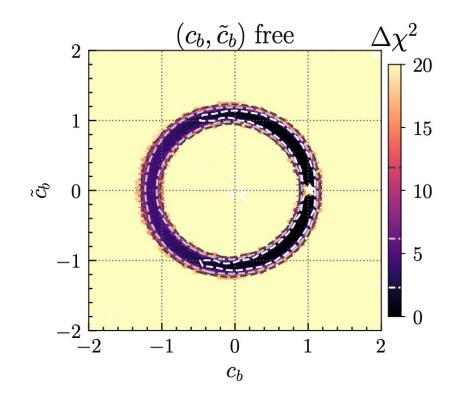



 \rightarrow combined analysis increasingly important


Future: CP-dependent EW NLO corrections

- with increased precision, electroweak NLO corrections become important
- EW NLO corrections can depend on Higgs CP nature
- → "background" processes become CP sensitive

Example: $t\bar{t}$ production [Martini et al.,2104.04277]



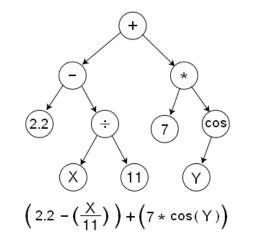
Bottom Yukawa — rate constraints

[HB et al.,2202.11753]

$$\mathcal{L}_{b\text{-Yuk}} = \frac{y_b^{\text{SM}}}{\sqrt{2}} \bar{b} \left(c_b + i\gamma_5 \tilde{c}_b \right) bH$$

- ring-like structure since $\Gamma_{H \to bb} \propto c_b^2 + \tilde{c}_b^2$.
- negative c_b values disfavored since ggH rate is enhanced by ~ 20%.
- direct bottom CP measurements basically impossible

indirect CP constraints will remain important for the bottom-Yukawa coupling

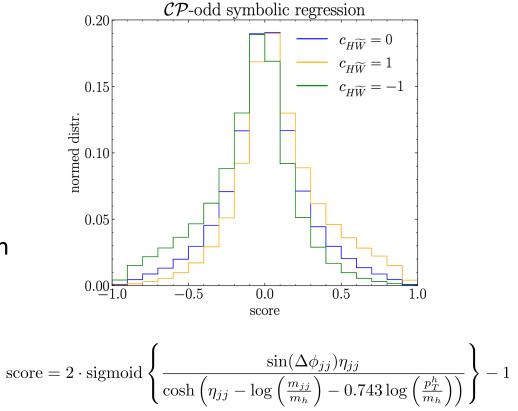

Symbolic regression for CP-odd observables

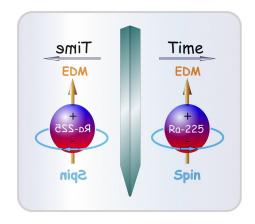
[HB,Fuchs,Menen,Plehn,in preparation]

• modify VBF by dim-6 operator

 $\frac{c_{H\widetilde{W}}}{\Lambda^2} \Phi^{\dagger} \Phi \widetilde{W}^a_{\mu\nu} W^{a\mu\nu}$

- construct optimal CP-odd observable by training pos. $c_{H\widetilde{W}}$ sample against neg. $c_{H\widetilde{W}}$ sample
- use symbolic regression to obtain analytic equation
- allows to confirm that learned observable is indeed CP-odd

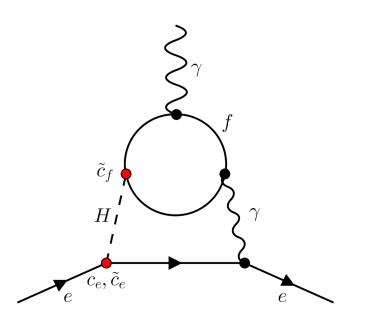

Symbolic regression for CP-odd observables


[HB,Fuchs,Menen,Plehn,in preparation]

• modify VBF by dim-6 operator

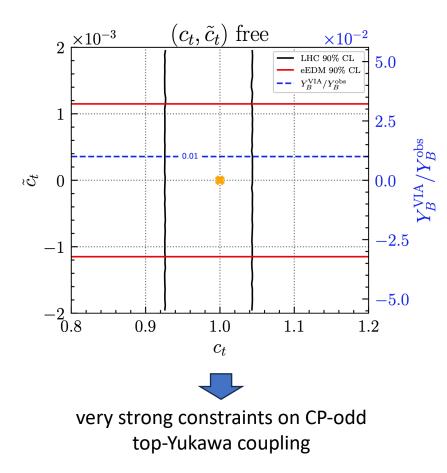
 $\frac{c_{H\widetilde{W}}}{\Lambda^2} \Phi^{\dagger} \Phi \widetilde{W}^a_{\mu\nu} W^{a\mu\nu}$

- construct optimal CP-odd observable by training pos. $c_{H\widetilde{W}}$ sample against neg. $c_{H\widetilde{W}}$ sample
- use symbolic regression to obtain analytic equation
- allows to confirm that learned observable is indeed CP-odd
- similar performance as normal classifier, 50% better than $\Delta \phi_{jj}$

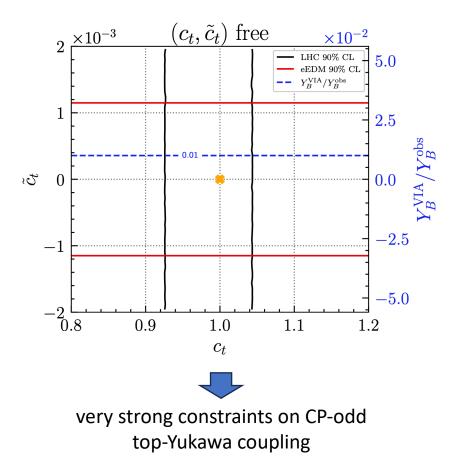


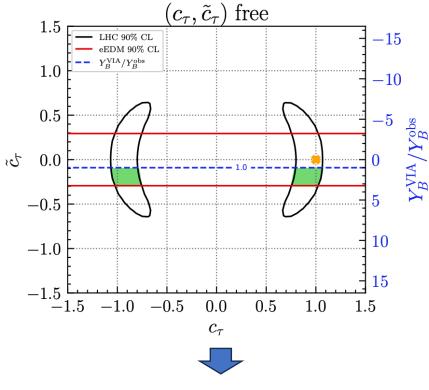
Probing Higgs CPV via EDMs

and the role of the LHC


EDM constraints

- EDMs sensitive to CPV Higgs couplings via 2L Bar-Zee diagrams
- bounds strongly depend on assumptions about
 - first-generation Yukawa coupling
 - absence of other CP-violating BSM physics
- significant increase in precision expected within the next years (see e.g. [Snowmass report, 2203.08103])
- evaluation of NLO corrections will become necessary (see e.g. [Brod et al., 2306.12478])

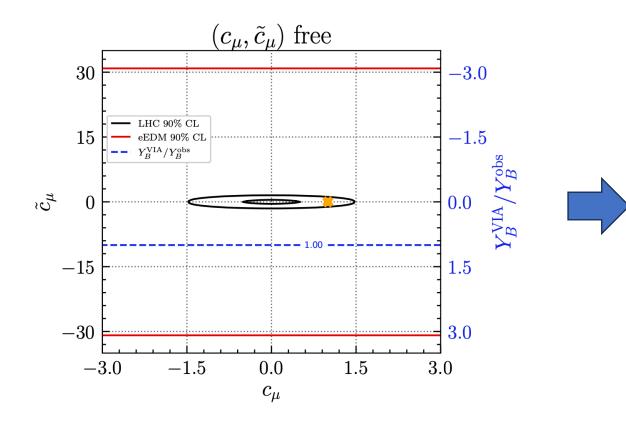

t and au Yukawas: EDM and LHC complementarity


[HB et al., 2202.11753; see also Brod et al., 2203.03736]

t and au Yukawas: EDM and LHC complementarity

[HB et al., 2202.11753; see also Brod et al., 2203.03736]

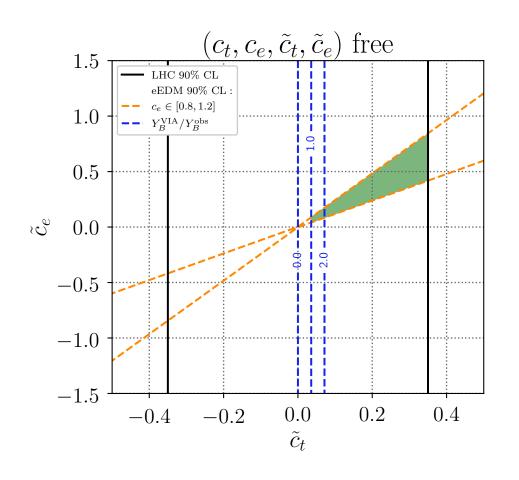
CP-odd τ coupling can potentially give sizeable contribution to baryon asymmetry


[Fuchs et al.,1911.08495;HB et al., 2202.11753]

EDM > LHC? No.

[Fuchs et al.,1911.08495;HB et al., 2202.11753]

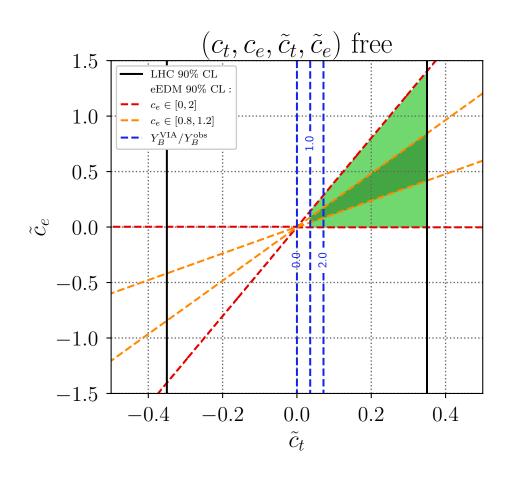
EDM > LHC? No.


[Fuchs et al.,1911.08495;HB et al., 2202.11753]

CP-insensitive $H \rightarrow \mu^+ \mu^-$ rate measurement outperforms EDM

Dependence on electron-Yukawa coupling

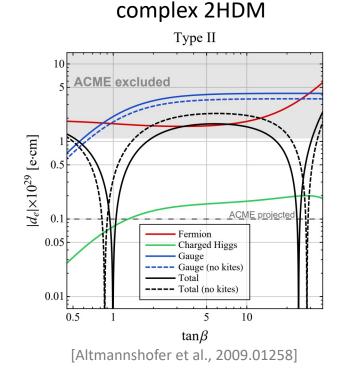
[HB et al.,2202.11753]


- electron Yukawa-coupling only very weakly constrained ($g_e \leq 268$ at 95% CL)
- if *c_e* smaller, eEDM significantly weakened.
- moreover, we can fine-tune CP-odd electron-Yukawa coupling such that $d_e < d_e^{\rm ACME}$
- neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

LHC bounds important since they do not depend on 1st gen Yukawa couplings

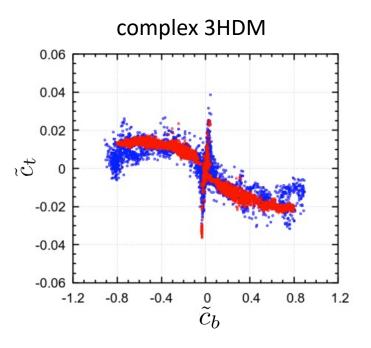
Dependence on electron-Yukawa coupling

[HB et al.,2202.11753]


- electron Yukawa-coupling only very weakly constrained ($g_e \leq 268$ at 95% CL)
- if *c_e* smaller, eEDM significantly weakened.
- moreover, we can fine-tune CP-odd electron-Yukawa coupling such that $d_e < d_e^{\rm ACME}$
- neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

LHC bounds important since they do not depend on 1st gen Yukawa couplings

BSM contributions to EDMs


- also BSM particles can have CP-violating coupling
- cancellations between different contributions

S

Henning Bahl

- combine multiple EDMs
- complementarity with direct searches

[Boto et al.,2407.19856]

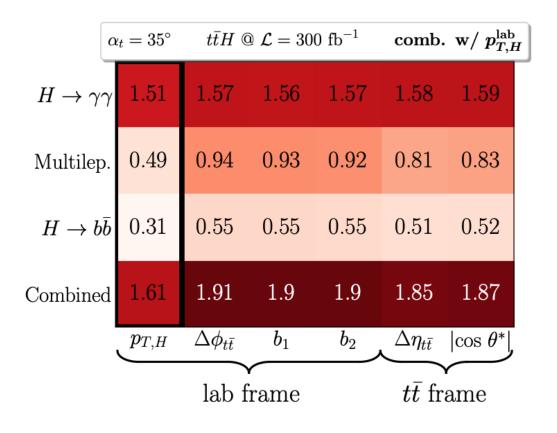
Conclusions

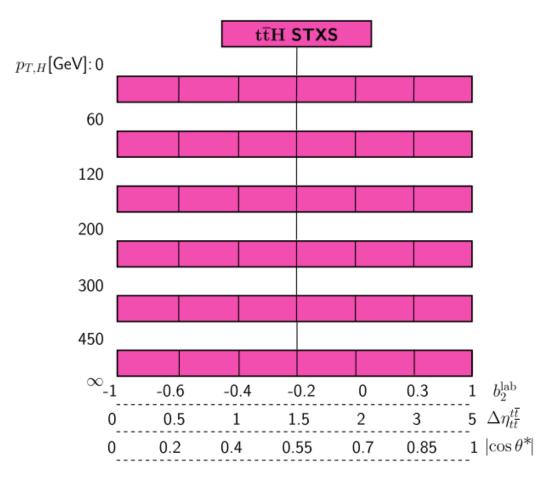
Conclusions

Initial question: how can we probe CP violation in the Higgs sector?

- LHC probes:
 - CP-sensitive but CP-even kinematic distributions \rightarrow CP sensitive $t\bar{t}H$ STXS extension
 - rate constraints \rightarrow CP character of bottom-Yukawa
 - CP-odd observables → optimal CP-odd observables using symbolic regression
- EDM constraints:
 - LHC allows to distinguish between different CPV couplings
 - EDM only sensitive to combination of couplings (including those of BSM particles)
 - strong dependence on first-generation Yukawas

Conclusions

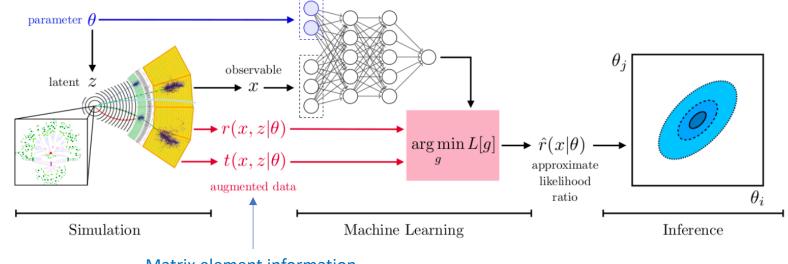



Initial question: how can we probe CP violation in the Higgs sector?

- LHC probes:
 - CP-sensitive but CP-even kinematic distributions \rightarrow CP sensitive $t\bar{t}H$ STXS extension
 - rate constraints \rightarrow CP character of bottom-Yukawa
 - CP-odd observables \rightarrow optimal CP-odd observables using symbolic regression
- EDM constraints:
 - LHC allows to distinguish between different CPV couplings
 - EDM only sensitive to combination of couplings (including those of BSM particles)
 - strong dependence on first-generation Yukawas

Thanks for your attention!

Appendix



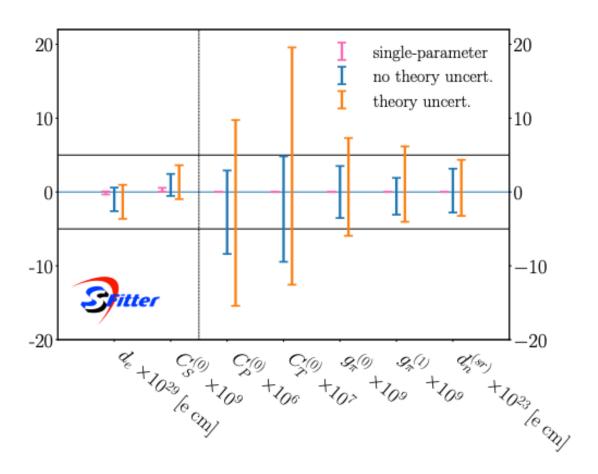
Simulation-based inference

[Brehmer et al., 1906.01578, 1805.12244, 1805.00013, 1805.00020, 1808.00973, 1907.10621]

[Brehmer et al.,1805.00013]

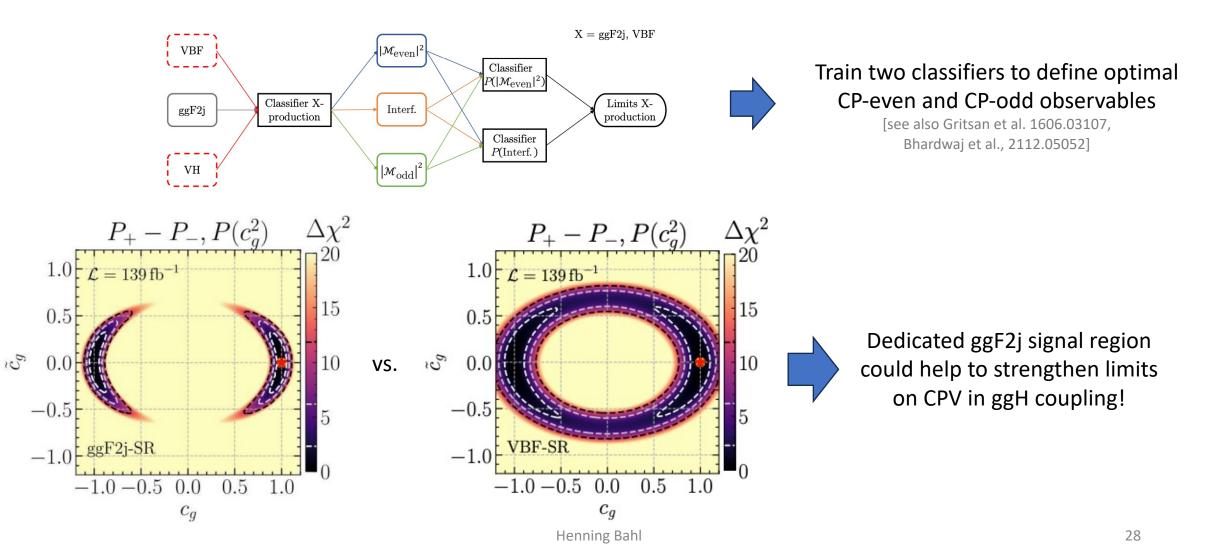
Matrix element information

Example applications:

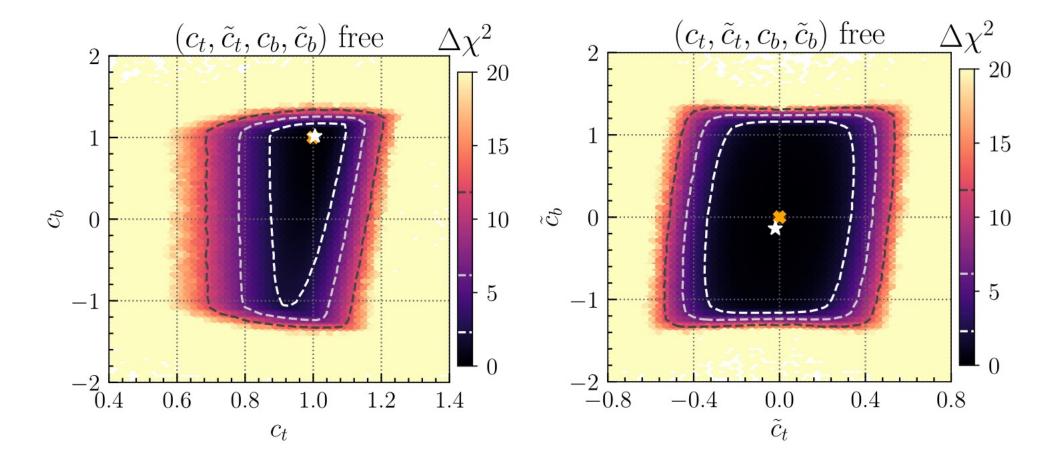

- Allows to extract the full available information (maximal sensitivity).
- No information loss due to binning (as for BDT analysis).
- No approximation of shower and detector effects

- tt
 t H → ~ 35% better limits on CP phase than from 2D histogram.
 [Barman et al.,2110.07635;HB & Brass 2110.10177]
- $WH \rightarrow \sim 25\%$ better limits on $c_{\widetilde{H}W}$ than from 2D histogram [Barrue et al., 2308.02882]

Current status and future outlook


Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	$14,\!000$	$14,\!000$	100,000	250	350	500	1,000	$1,\!300$	125	125	3,000	(theory)
$\mathcal{L}~(\mathrm{fb}^{-1})$	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	\checkmark	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	_	$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	_	_	_	_	_	_	_	_	$< 10^{-2}$
$Htar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_	_	\checkmark	$< 10^{-2}$
H au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	_	_		\checkmark	_	$< 10^{-2}$

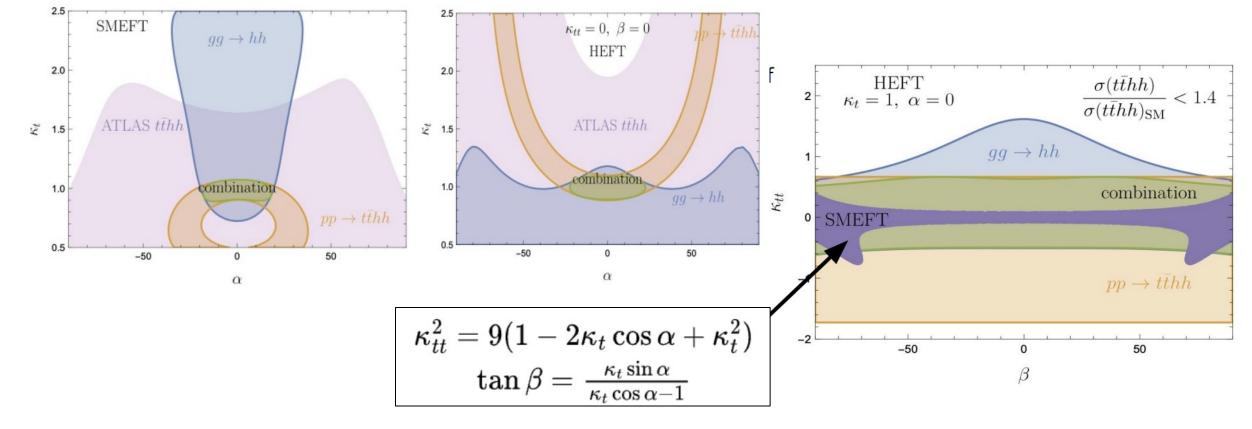
Limits set on:
$$f_{CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{CP \text{ odd}}}{\Gamma_{H \to X}^{CP \text{ odd}} + \Gamma_{H \to X}^{CP \text{ even}}}$$



Classifying the CP properties of the ggH coupling in H+2j production

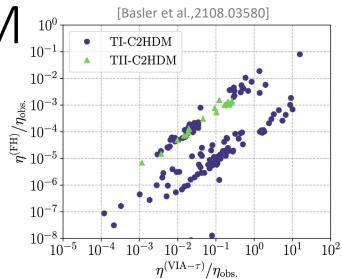
[HB,Fuchs,Hannig,Menen,2309.03146]

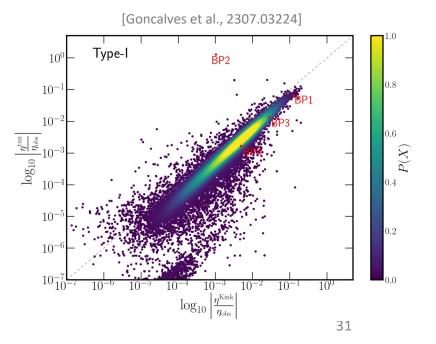
Interplay of bottom and top Yukawas


Non-linear top-Higgs CP violation

[Bhardwaj,Englert,Goncalves,Navarro, 2308.11722]

$${\cal L}_{
m HEFT} \supset -rac{m_t}{v}\,\kappa_t\,ar{t}(\coslpha+i\gamma^5\sinlpha)\,t\,h -rac{m_t}{2v^2}\,\kappa_{tt}\,ar{t}(\coseta+i\gamma^5\sineta)\,t\,h^2$$




Probe correlations between *tth* and *tthh* couplings using di-Higgs production modes at HL-LHC.

Baryogenesis in the complex 2HDM

- Complex 2HDM provides all ingredients for electroweak baryogenesis:
 - Additional sources of CP violation.
 - Modifications of the Higgs potential to trigger strong firstorder phase transition.
- Calculation of baryon asymmetry suffers from large theoretical uncertainty:
 - thermal resummation,
 - VIA vs WKB/FH approximation,
 - description of bubble wall,
 - ...

