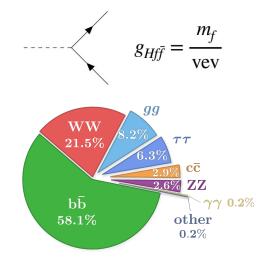
Measurements of Higgs boson coupling properties to leptons with the ATLAS detector

Precision Higgs measurements and calculations IV Higgs 2024 Uppsala

Enrique Valiente Moreno (IFIC, CSIC-UV), on behalf of the ATLAS Collaboration

06/11/2024



Introduction

- The Higgs boson decays preferably to heavy particles due to its coupling being proportional to their mass $(\propto m_v^2, m_f)$
- Coupling to bosons $(H \rightarrow \gamma \gamma, H \rightarrow ZZ^{(*)} \rightarrow 4\ell)$ provides efficient balance between branching ratio and notable mass resolution for the Higgs boson candidate
- Coupling to fermions via Yukawa mechanism:
 - \circ $H \rightarrow \tau \tau$, $H \rightarrow bb$: good mass resolution, challenging backgrounds
 - Other generations of fermions are limited by lower branching ratios (BR)
 - Couplings of the Higgs boson to leptons at best possible precision
 - provides tests of the Standard Model (SM) and offers stringent constraints on Beyond Standard Model (BSM) theories

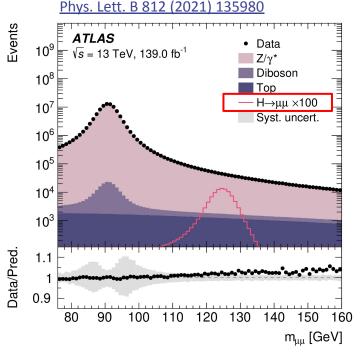
ATLAS Run-2 "precision era":

- Interaction with third-generation leptons (*τ*-leptons) measured (arXiv:2407.16320, Phys. Lett. B 855 (2024) 138817)
- Indications of interactions with second-generation leptons (muons, μ) are emerging (Phys. Lett. B 812 (2021) 135980)
- Other relevant analyses using H→leptons final states relying on their clean signatures:
 - Searches for Lepton Flavour Violation (LFV) (JHEP 07 (2023) 166)

A search for the di-muon decay of the Standard Model Higgs boson

Run: 281411 Event: 312608026 2015-10-11 18:40:58 CEST

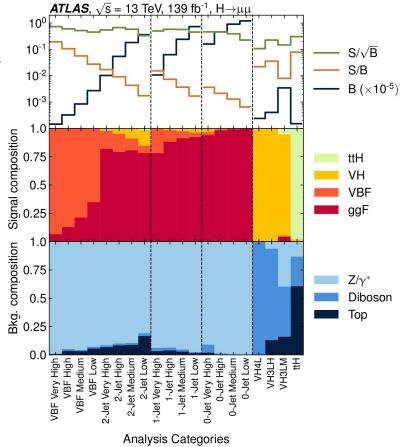
VBF($H \rightarrow \mu\mu$): Higgs boson candidate decaying to two muons (in red) + two forward jets (yellow cones)



$H \rightarrow \mu\mu$ search: motivation

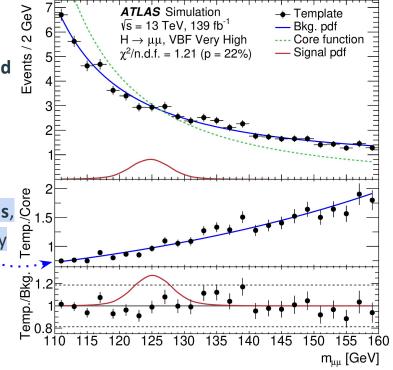
- $H \rightarrow \mu\mu$ could provide the first measurement of Higgs boson interactions with second-generation fermions at LHC
- Very clean final state, but poor signal-to-background ratio
 - Large irreducible background from Drell-Yan (DY) production
 - Small $H \rightarrow \mu\mu$ branching fraction: (2.17 ± 0.04)x10⁻⁴
 - Signal/background ratio typically at 0.1% level
- New round aiming to improve the previous preliminary results at 139 fb⁻¹ (<u>ATLAS-CONF-2019-028</u>)
 - Observed significance: **0.8***σ* (expected **1.5***σ*)

$$\circ$$
 Signal strength: $\mu = rac{N_{observed}}{N_{expected}^{SM}} = 0.5 \pm 0.7$



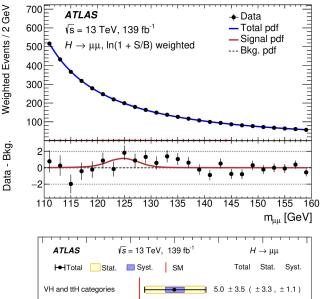
$H \rightarrow \mu\mu$ search: analysis strategy

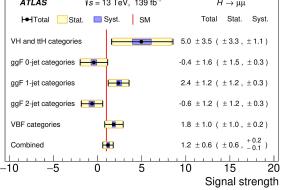
- Events classified into **20 mutually exclusive categories** defined to maximise sensitivity using **BDT discriminants**
 - First test for ttH category (b-jet + extra lepton)
 - If not, test for VH categories (1+ extra leptons + b-jet veto)
 - 3-leptons targeting WH and 4-lepton for ZH
 - Otherwise, split according to jet multiplicity
 (0, 1, 2+) and target ggF/VBF productions explicitly against Drell-Yan production sources



$H \rightarrow \mu\mu$ search: background modelling

- Given the small S/B (~0.2% inclusively in the 120-130 GeV window) an accurate description of the background is required
 - Using a combination of **core** function **x empirical** one
 - Leading-order (DY) line-shape & detector effects
 - Describes DY mass shape
 - Inclusive and without free parameters
 - Power law functions or exponential of polynomials, used to account for m_{uu} distortions in each category
 - Flexible: due to selection, categorisation...



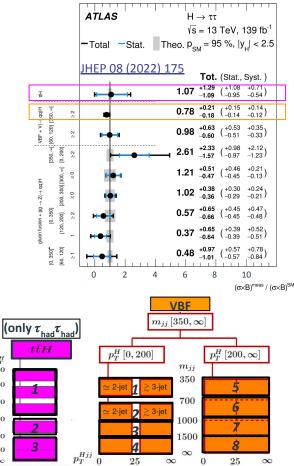


$H \rightarrow \mu\mu$ search: results

- **Signal yields** extracted from a simultaneous binned maximum likelihood fit to the m_{µµ} distributions in the 20 categories
- Signal strength $\mu = 1.2 \pm 0.6$
 - **Observed significance:** 2.0 σ (expected 1.7 σ)
 - Dominated by the **statistical** component (~0.58 in $\Delta \mu$)
 - signal systematics ~0.1 in $\Delta \mu$
 - experimental uncertainties ~0.05 in $\Delta \mu$
- Upper limit on BR($H \rightarrow \mu \mu$) < 4.7 × 10⁻⁴
 - \circ BR_{SM}($H \rightarrow \mu \mu$) = 2.18 × 10⁻⁴
 - ~25% improvement with respect to previous result

Measurement of Standard Model Higgs boson decay to τ -leptons

> Run: 299584 Event: 901388344 2016-05-20 17:40:04 CEST


ttH($\rightarrow \tau \tau$): Higgs boson candidate decaying to two hadronically decaying taus (in blue) + six jets produced by top decays (yellow cones)

$H \rightarrow \tau \tau$ measurement: motivation

- Largest leptonic BR(H) of 6.3%
- Three di- τ system decay channels: $\tau_{lep} \tau_{lep}$, $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$
- $H \rightarrow \tau \tau$ provided the most precise single measurement for VBF production in the first round of this analysis (JHEP 08 (2022) 175)
- New measurement performed: re-analysis of full Run 2 dataset to further exploit ttH and VBF sensitivity (<u>arXiv:2407.16320</u>)
 - <u>STXS</u> $H \rightarrow \tau \tau$ measurements: improved phase space granularity for VBF (as function of $p_{\tau}(H)$ and m_{jj}) and ttH (as a function of $p_{\tau}(H)$)
 - <u>First</u> fiducial differential cross section measurements of $H \rightarrow \tau \tau$ in a VBF enhanced phase space
 - In bins of unfolded $p_T(j_0)$, $p_T(H)$, $\Delta \phi_{jj}^{signed}$, $\Delta \phi_{jj}^{signed}$ vs. $p_T(H)$
 - Results interpreted in SMEFT framework

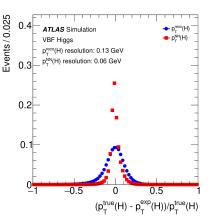
 p_T^H

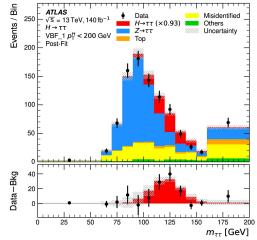
60

120

200

300

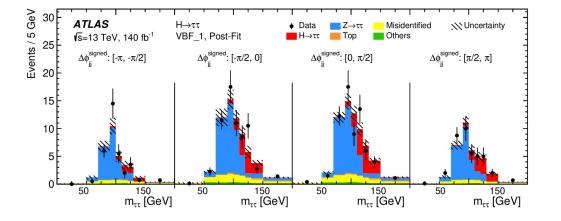

450



$H \rightarrow \tau \tau$: analysis strategy

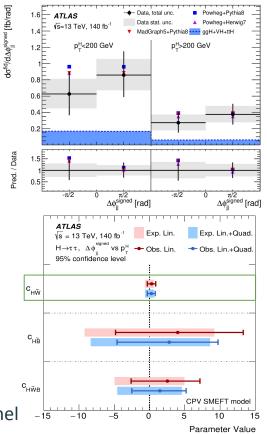
- **Event categorization** also mainly based on BDT discriminants
 - Separation of VBF from ggH/ $Z \rightarrow \tau \tau$: dedicated BDT targeting VBF + optimized cuts on the score for each STXS VBF bins
 - Separation of ttH from tt/Z $\rightarrow \tau\tau$: two Multiclass BDTs (p_T(H) < 200 GeV and p_T(H) > 200 GeV)
- p_T(H) reconstruction approach
 - VBF and ttH categorisation rely on a **novel NN regression** exploiting E_{T}^{miss} and di- τ system variables
- Higgs boson candidate mass reconstruction via Missing Mass Calculator (MMC)
 - $m_{\tau\tau}^{MMC}$ used as input for binned maximum likelihood fit used to extract the cross sections
- Background estimation: same strategy as in the previous round

$H \rightarrow \tau \tau$ measurement: results (STXS)


	ATLAS	H→ττ √s = 13 TeV, 140 fb ⁻¹		
	-Tot. ■Syst. NTheory	p-value = 6%		
		Tot. (Stat. Syst.)		
$gg \rightarrow H$, 1-jet, $120 \le p_T^H < 200 \text{ GeV}$	-	$0.35 \begin{array}{c} {}^{+0.61}_{-0.61} & \left(\begin{array}{c} {}^{+0.38}_{-0.37} & {}^{+0.49}_{-0.48} \end{array} \right)$		
$gg \rightarrow H, \ge 1$ -jet, $60 \le p_T^H < 120 \text{ GeV}$		$\begin{array}{cccc} \textbf{0.50} & {}^{+0.89}_{-0.89} & ({}^{+0.52}_{-0.52} & {}^{+0.72}_{-0.72} \end{array})$		
gg \rightarrow H, ≥ 2-jet, m _j < 350, 120 ≤ p _T ^H < 200 GeV	-	$0.53 \begin{array}{c} {}^{+0.75}_{-0.74} (\begin{array}{c} {}^{+0.49}_{-0.48} & {}^{+0.57}_{-0.56} \end{array})$		
gg \rightarrow H, ≥ 2-jet, m _j ≥ 350 GeV, p _T ^H < 200 GeV	ب	5.09 $^{+3.09}_{-2.49}$ ($^{+1.66}_{-1.64}$ $^{+2.61}_{-1.87}$)		
gg→H, 200 ≤ p_T^H < 300 GeV	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$gg \rightarrow H, p_T^H \ge 300 \text{ GeV}$	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
qq' \rightarrow Hqq', \geq 2-jet, 60 \leq m _j < 120 GeV	- Hereita - Here	$0.94 \begin{array}{c} ^{+0.68}_{-0.65} & (\begin{array}{c} ^{+0.57}_{-0.55} & ^{+0.38}_{-0.36} \end{array})$		
qq'→Hqq', ≥ 2-jet, 350 ≤ m_{ji} < 700 GeV, p_T^H < 200 GeV	H	-0.96 ^{+1.17} (^{+0.83} ^{+0.81}) -1.31 (^{-0.81} ^{-1.03})		
qq'→Hqq', ≥ 2-jet, 700 ≤ m_{ij} < 1000 GeV, p_T^H < 200 GeV		-0.24 $^{+0.79}_{-0.89}$ ($^{+0.63}_{-0.60}$ $^{+0.49}_{-0.65}$)		
qq'→Hqq', ≥ 2-jet, 1000 ≤ m_{ij} < 1500 GeV, p_T^H < 200 GeV	H <mark>a</mark> ll	$1.68 \begin{array}{c} ^{+0.61}_{-0.55} & (\begin{array}{c} ^{+0.50}_{-0.47} & \begin{array}{c} ^{+0.35}_{-0.29} \end{array}) \end{array}$		
qq'→Hqq', ≥ 2-jet, mj ≥ 1500 GeV, p _T ^H < 200 GeV		$0.12 \begin{array}{c} ^{+0.34}_{-0.33} & \left(\begin{array}{c} ^{+0.30}_{-0.27} & ^{+0.16}_{-0.18} \right) \end{array} \right)$		
qq'→Hqq', ≥ 2-jet, 350 ≤ m_{ij} < 700 GeV, p_T^H ≥ 200 GeV	H	-1.16 ^{+0.87} (^{+0.75} ^{+0.44})		
qq'→Hqq', ≥ 2-jet, 700 ≤ m _{ii} < 1000 GeV, p _T ^H ≥ 200 GeV	- H	0.98 ^{+0.73} (^{+0.67} ^{+0.28}) -0.63 (^{-0.59} -0.23)		
qq'→Hqq', ≥ 2-jet, 1000 ≤ m_{ij} < 1500 GeV, p_T^H ≥ 200 GeV		$1.40 \begin{array}{c} ^{+0.56}_{-0.50} & \left(\begin{array}{cc} ^{+0.52}_{-0.47} & ^{+0.20}_{-0.18} \right) \end{array}$		
qqʻ→Hqq', ≥ 2-jet, m _{ji} ≥ 1500 GeV, p _T ^H ≥ 200 GeV		$1.29 \begin{array}{c} {}^{+0.39}_{-0.34} \left(\begin{array}{c} {}^{+0.35}_{-0.32} {}^{+0.18}_{-0.13} \right) \end{array}$		
ttH, p _T ^H < 200 GeV	1	2.1 ^{+1.8} (^{+1.5} ^{+0.8}) (^{-1.3} ^{-0.8})		
ttH, 200 ≤ p _T ^H < 300 GeV	1	-2.2 ^{+1.3} (^{+1.1} ^{+0.6} _{-0.8})		
ttH, p _T ^H ≥ 300 GeV		3.6 +2.9 (+2.6 +1.3) -2.3 (-2.1 -0.9)		
	0 5	10 15 20		
		$(\sigma imes B)^{ m meas}/(\sigma imes B)^{ m SM}$		

- No significant deviations observed from SM predictions
- STXS VBF 8 bins:
 - $p_{T}(H) > 200 \text{ GeV and } m_{ii} > 1500 \text{ GeV}$ Ο
 - $\blacksquare \quad (\sigma \times B)^{\text{meas}} / (\sigma \times B)^{\text{SM}} = 1.29^{+0.39}_{-0.34}$
 - First measurement for higher $p_{\tau}(H)$
 - $p_{\tau}(H) < 200 \text{ GeV} \text{ and } m_{ii} > 1500 \text{ GeV}$ Ο
 - $(\sigma imes B)^{
 m meas}/(\sigma imes B)^{
 m SM}=0.12^{+0.34}_{-0.33}$
 - Most precise measurement for lower $p_{\tau}(H)$
- STXS ttH 3 bins: statistically limited \rightarrow upper limits
 - ~25% improvement on ttH inclusive Ο measurement in the signal strength

$H \rightarrow \tau \tau$ measurement: results (differential)

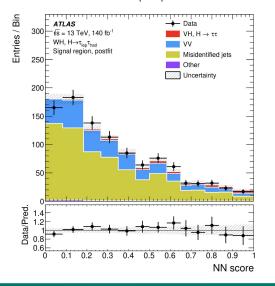


• Fitted $m_{ au au}^{MMC}$ in all bins of the differential distributions

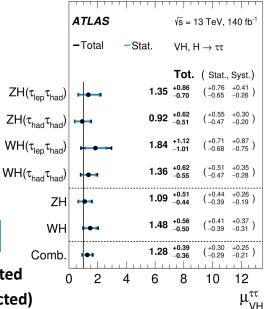
- Results of all bins in differential fiducial phase space in good agreement with the SM expectations
- SMEFT interpretation:

$$\sigma_{\rm SM+EFT} \propto |\mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_i|^2 = |\mathcal{M}_{\rm SM}|^2 + 2\sum_{i} \frac{c_i}{\Lambda^2} \mathcal{R}(\mathcal{M}_{\rm SM}^* \mathcal{M}_i) + \sum_{i,i} \frac{c_i c_j}{\Lambda^4} \mathcal{R}(\mathcal{M}_i^* \mathcal{M}_j)$$

 $\circ C_{H\tilde{W}}$: [-0.31, +0.88] for Λ = 1 TeV \rightarrow tightest to the date from any channel -15



V(lep)H $\rightarrow \tau \tau$ measurement


- Aim to measure cross-section of Higgs boson production in association with a vector boson that decays leptonically, with $H \rightarrow \tau \tau$ decaying into $\tau_{lep} \tau_{had}$ and $\tau_{had} \tau_{had}$ using the full Run-2 dataset (<u>Phys. Lett. B 855 (2024) 138817</u>)
 - VH and $H \rightarrow \tau \tau$ processes already measured separately using Run-2 data
- Four final states: $ZH(\tau_{lep}\tau_{had})$, $ZH(\tau_{had}\tau_{had})$, $WH(\tau_{lep}\tau_{had})$ and $WH(\tau_{had}\tau_{had})$:
 - $WH(\tau_{lep} \tau_{had})$ further split depending on: ee, eµ, µµ
 - \circ $H \rightarrow \tau_{lep} \tau_{lep}$ excluded to preserve orthogonality with other analyses

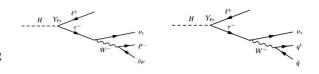
- Signal yields extracted from binned maximum likelihood fit to NN classifier score distributions
 - Measured signal strength relative to the SM prediction:

$$\mu_{VH}^{\tau\tau} = 1.28 {}^{+0.39}_{-0.36} = 1.28 {}^{+0.30}_{-0.29} \text{ (stat.) }^{+0.25}_{-0.21} \text{ (syst.)}$$

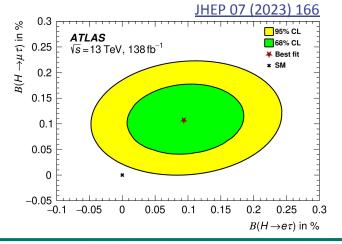
NN-based analysis shows an excess over the expected
 background with a significance of 4.5σ (3.5σ expected)

Search for Higgs boson LFV decays

Run: 362354 Event: 1551107603 2018-10-01 03:02:47 CEST


VBF produced H \rightarrow *eµ* candidates an electron track is shown in green, a red line indicates a muon. Jets are displayed as dark-yellow cones, the E_r^{miss} is shown by a white dashed line

Search for H LFV decays



- Lepton flavour violation (LFV) **not allowed** in the **SM**
- In the charged sector one possibility are LFV Higgs boson decays: $H \rightarrow \tau e$, $H \rightarrow \tau \mu$
 - Separate searches for $e\tau$ and $\mu\tau$, with two channels each ($\ell\tau_{\ell'}$ and $\ell\tau_{had}$)
- MVA discriminants (BDTs and NNs) used to further split signal and backgrounds ($Z \rightarrow \tau \tau$, Top and Misidentified objects)
- Statistical fit for signal strength extraction using binned maximum likelihood fit:
- **1 POI fit**: independent fit for each signal, BR(H \rightarrow e τ) = 0 when fitting BR(H \rightarrow $\mu\tau$) and viceversa
- **2 POI fit**: simultaneous for BR($H \rightarrow e\tau$) and BR($H \rightarrow \mu\tau$)
 - Compatibility is found to be within 2.3 σ with the SM
- **Observed limits are more stringent** by a factor of **2.4** and **1.5** in BR($H \rightarrow e\tau$) and BR($H \rightarrow \mu\tau$) respectively compared to <u>JHEP 07 (2023)</u> <u>166</u> (36 fb⁻¹ previous analysis)
 - **Expected limits** improved by a factor of 3.1 and 4.1.

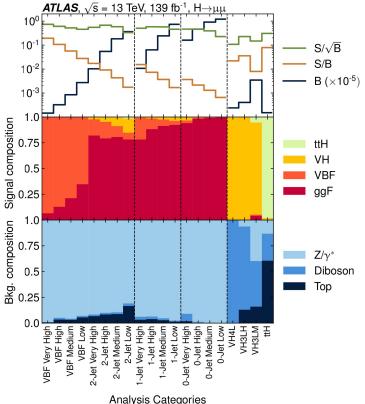
Observed(expected) 95% CL upper limits:

 $BR(H \rightarrow e\tau) = 0.230\%(0.118^{+0.047}_{-0.033})$ $BR(H \rightarrow \mu\tau) = 0.163\%(0.089^{+0.036}_{-0.025})$

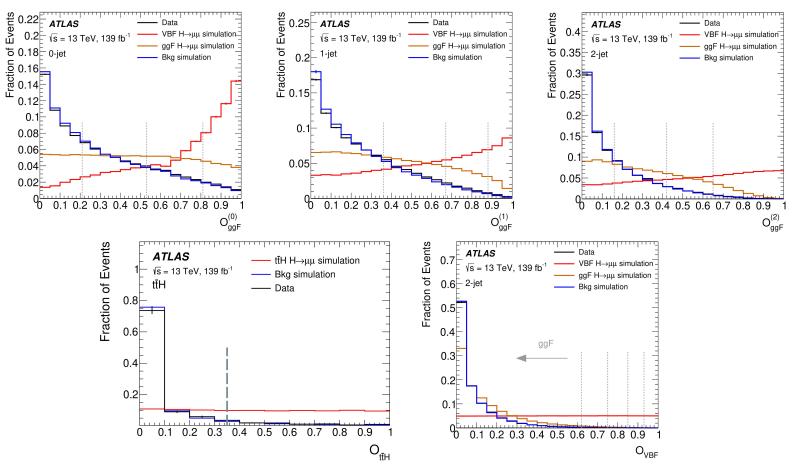
Summary

- Presented latest ATLAS analyses regarding the study of Higgs boson coupling properties to leptons
- Full Run-2 (139 fb⁻¹) $H \rightarrow \mu\mu$ analysis improved expected sensitivity
 - More categories using BDT scores including specific VH and ttH production
- "Legacy" Run-2 STXS/Differential H→ττ analysis improved by 8% the total signal strength and 25% ttH signal strength measurement. Provided again most precise VBF Higgs boson production cross-section measurement
 - Finer binning in the STXS strategy
 - New MVA machinery
 - First fiducial differential cross section measurements of $H \rightarrow \tau \tau$ in a VBF enhanced phase space
- V(lep)H $\rightarrow \tau\tau$ measurement forecasts an important observation of this process of 4.5 σ (3.5 expected)
 - Room for further improvement
- No significant excess was observed from **searches for LFV Higgs boson decays**
 - Upper limits were significantly tightened

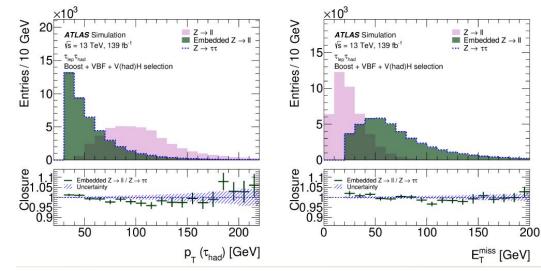
- The author's work is supported by:
 - FPU2021 grant funded by MICIU/AEI /10.13039/501100011033 and by the FSE+
 - Grants PID2021-124912NB-I00 and PID2021-125069OB-100 funded by MCIN/AEI/10.13039/501100011033
 - Project ASFAE/2022/008 funded by MCIN, by the European Union NextGenerationEU (PRTR-C17.I01) and Generalitat Valenciana


Additional material

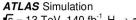
$H \rightarrow \mu\mu$ search: analysis strategy

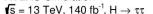

- Two oppositely charged, isolated and well identified muons
- Events classified into **20 mutually exclusive categories** defined to maximise sensitivity using **BDT discriminants**
 - First test for ttH category (b-jet + extra lepton)
 - 1 BDT: ttH vs. backgrounds
 - If not, test for VH categories (1+ extra leptons + b-jet veto)
 - 2 BDTs: 3-leptons targeting WH and 4-lepton targeting ZH
 - Otherwise, split according to jet multiplicity (0, 1, 2+) and target ggF/VBF productions explicitly against Drell-Yan production sources
 - 4 BDTs: +2-jets for VBF vs. backgrounds and
 +2/1/0-jets targeting ggF+VBF against backgrounds

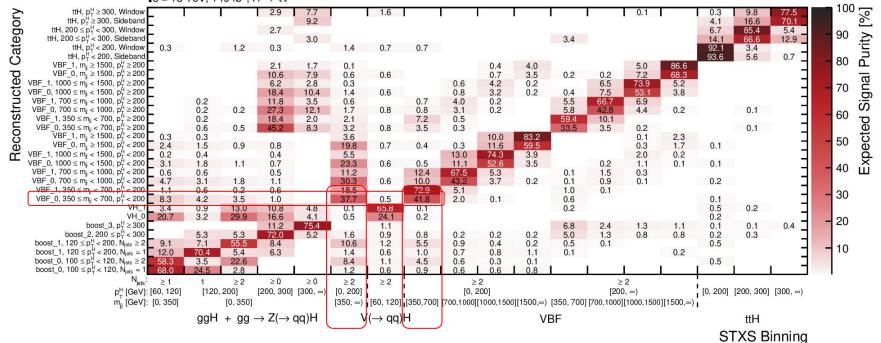
$H \rightarrow \mu\mu$ search: BDT discriminants



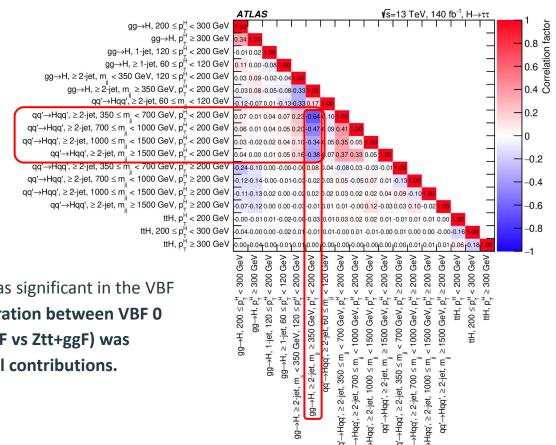
$H \rightarrow \tau \tau$ measurement: background estimation


- For this new round, background estimation strategy is mostly inherited from previous analysis
- $Z \rightarrow \tau \tau$ is the largest background. Object-level-embedding is employed to build control regions out of $Z \rightarrow \ell \ell$ events.
 - Kinematic cuts are applied on embedded τ objects that are created by splitting the ℓ into a visible and a neutrino component
 - Each signal region has single bin Z control region to constrain the Z contribution. MC is used to model the $m_{\tau\tau}$ contribution in the SR.
- Fake leptons background estimation: same Matrix Method (MM) in the $\tau_e \tau_\mu$ channel as before, and a fake factor derived for $\tau_l \tau_h$ and $\tau_h \tau_h$ channels.





Pre-fit signal purity in each reconstructed category (per bin)



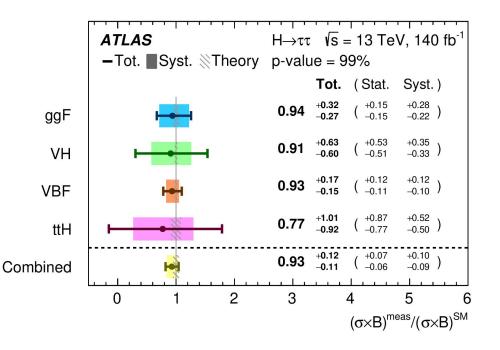
$H \rightarrow \tau \tau$ measurement: STXS - 18 Pol fit

Correlations between Pols

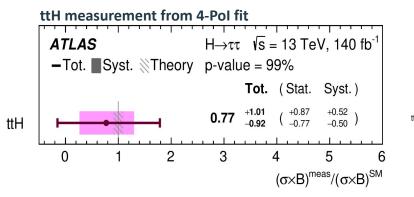
- Significant VBF-like ggH contribution
 (ggH+2 jet production with m_{jj} > 350 GeV,
 p_T^H < 200 GeV) in reconstructed level
 categories targeting VBF signal
 - Leads to anti-correlation in the measurements
- We knew that VBF-like ggH contribution was significant in the VBF
 0 SRs. However, we thought that the separation between VBF 0
 and VBF 1 provided by the VBF tagger (VBF vs Ztt+ggF) was
 enough to isolate efficiently the VBF signal contributions.

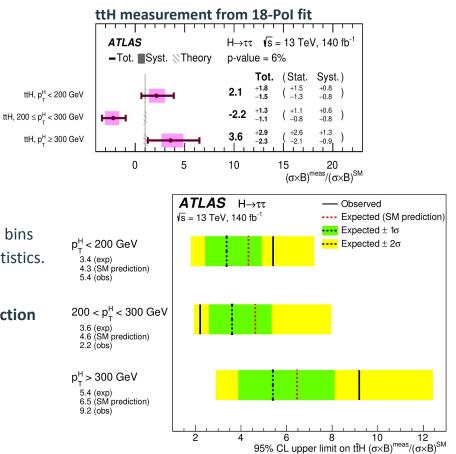
$H \rightarrow \tau \tau$ measurement: STXS - 18 Pol fit

	<u> </u>				
	ATLAS	Η→ττ	s	= 13 Te\	V, 140 fb ⁻¹
	-Tot. ∎Syst. ⊗Theory				
			Tot.	(Stat.	Syst.)
gg \rightarrow H, 1-jet, 120 \leq p _T ^H < 200 GeV	😐 😐	1.00	+0.58 -0.57	(+0.36 -0.36	$^{+0.46}_{-0.45}$)
$gg \rightarrow H, \ge 1$ -jet, $60 \le p_T^H < 120 \text{ GeV}$		1.00	+0.78 -0.78	(^{+0.48} 0.47	^{+0.62} -0.62)
gg→H, ≥ 2-jet, m_{ji} < 350 GeV, 120≤ p_T^H < 200 GeV	H	1.00	+0.70 -0.67	(+0.47 -0.47	+0.52 -0.48)
gg \rightarrow H, ≥ 2-jet, m _j ≥ 350 GeV, p _T ^H < 200 GeV	F	1.00	+2.01 -1.87	(^{+1.42} 40	^{+1.42} -1.24)
gg \rightarrow H, 200 \leq p _T ^H < 300 GeV		1.00	+0.40 -0.36	(^{+0.28} 0.28	+0.28 -0.22)
$gg \rightarrow H, \ p_{_T}^H \ge 300 \ GeV$	-	1.00	+0.52 -0.46	(+0.42 -0.41	+0.30 -0.21)
qq' \rightarrow Hqq', \geq 2-jet, 60 \leq m _j < 120 GeV	1	1.00	+0.64 -0.62	(^{+0.54} 0.52	^{+0.34} -0.32)
qq' \rightarrow Hqq', \geq 2-jet, 350 \leq m _{ji} < 700 GeV, p _T ^H < 200 GeV	1	1.00	+0.87 -0.85	(+0.72 -0.70	+0.48 -0.49)
$qq' \rightarrow Hqq', \ge 2\text{-jet}, 700 \le m_{ji} < 1000 \text{ GeV}, p_T^H < 200 \text{ GeV}$	H a H	1.00	+0.69 -0.66	(+0.59 -0.56	+0.36 -0.34)
qq'→Hqq', ≥ 2-jet, 1000 ≤ m_{jj} < 1500 GeV, p_T^H < 200 GeV	HH I	1.00	+0.49 -0.44	(^{+0.43} 0.40	+0.24 -0.18)
qq' \rightarrow Hqq', ≥ 2-jet, m _{jj} ≥ 1500 GeV, p _T ^H < 200 GeV		1.00	+0.39 -0.33	(^{+0.32} 0.30	+0.22 -0.15)
qq'→Hqq', ≥ 2-jet, 350 ≤ m_{jj} < 700 GeV, p_T^H ≥ 200 GeV	H -	1.00	+1.22 -1.07	(^{+1.15} 0.98	+0.41 -0.42)
$qq' \rightarrow Hqq', \geq 2\text{-jet}, \ 700 \leq m_{ji} < 1000 \ \text{GeV}, \ p_{T}^{H} \geq 200 \ \text{GeV}$	H	1.00	+0.68 -0.59	(^{+0.63} 0.56	+0.25 -0.19)
qq' \rightarrow Hqq', \geq 2-jet, 1000 \leq m _j < 1500 GeV, p _T ^H \geq 200 GeV	÷.	1.00	+0.48 -0.43	(+0.45 -0.40	+0.16 -0.14)
$qq' \rightarrow Hqq', \geq 2\text{-jet}, \ m_{jj} \geq 1500 \ \text{GeV}, \ p_T^H \geq 200 \ \text{GeV}$		1.00	+0.34 -0.30	(^{+0.31} 0.28	+0.15 -0.10)
ttH , p_{T}^{H} < 200 GeV	F	1.0	+1.5 -1.3	(^{+1.3} 1.1	+0.7 -0.8)
ttH, 200 $\leq p_{_T}^H < 300 \text{ GeV}$	F	1.0	+1.7 -1.4	(^{+1.5} 1.2	+0.6 -0.6)
ttH, $p_T^H \ge 300 \text{ GeV}$		1.0	+2.3 -1.9	(+2.1 -1.6	+1.0 -0.9)
	0 5	10		15 (σ×B) ^r	20 ^{neas} /(σ×B) SM


Expected values for the 18 POIs considered for the different STXS bins under study for each **Higgs boson production mode**

$H \rightarrow \tau \tau$ measurement: STXS - 4 Pol fit


- 4-Pol fit results, considering a dedicated parameter for each of the four Higgs boson production modes
- The "Combined" results corresponds to the 1-Pol fit



$H \rightarrow \tau \tau$ measurement - Results for ttH

- 4-Pol fit: dedicated Pol for each production mode
- **18-Pol fit**: no significant deviations from the SM in ttH STXS bins
 - \circ \quad Limited sensitivity obtained in the fit due to poor statistics.
 - **Upper exclusion limits at 95% CL** were computed:
 - Expected (μ =0): ranging between **~3-5xSM prediction**
 - Expected injecting μ =1: **~4-6xSM prediction**
 - Observed: ~2-9xSM prediction

$H \rightarrow \tau \tau$ measurement - Unfolded differential

Probability 1

0.7

-0.6

0.5

-0.4

0.3

0.2

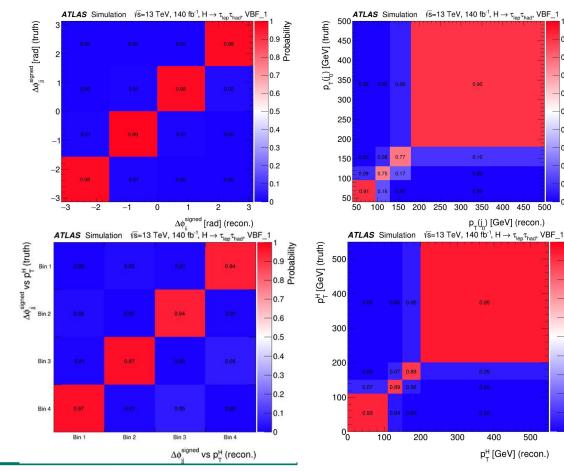
0.1

Lobability 1 Probability

-0.7

-0.6

-0.5


0.4

0.3

0.2

0.1

- **Migration matrices** evaluated from MC . simulations of Higgs bosons decaying to $\tau_{\rm lep} \tau_{\rm had}$
- Each matrix element is the probability for a signal event generated in a fiducial truth-bin to be selected in a VBF 1 reconstructed (recon.) bin in the $T_{lep}T_{had}$ channel

$H \rightarrow \tau \tau$ measurement - Differential (SMEFT)

- Unfolded distributions are sensitive to BSM effects in VBF Higgs boson production
 - EFT framework parametrizes these potential BSM effects
 - Only dimension-six operators are considered in this analysis
 - Warsaw basis: 3 CP-even and 3 CP-odd operators contribute to Higgs boson interactions with vector bosons

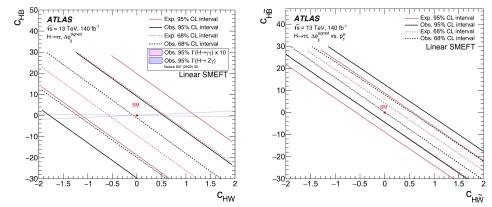
 $\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d} \sum_{i}^{d} \frac{c_{i}^{(d)}}{\Lambda^{d-4}} O_{i}^{(d)}, \text{ for } d > 4.$

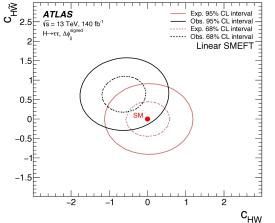
• The change in the cross-section for each Wilson coefficient in each kinematic bin k:

$$\sigma_{\rm SM+EFT}^{k} = \sigma_{\rm SM}^{k} \left(1 + \alpha_{ik} \frac{c_i}{\Lambda^2} + \beta_{ik} \left(\frac{c_i}{\Lambda^2} \right)^2 \right)$$

SM interference with new physics

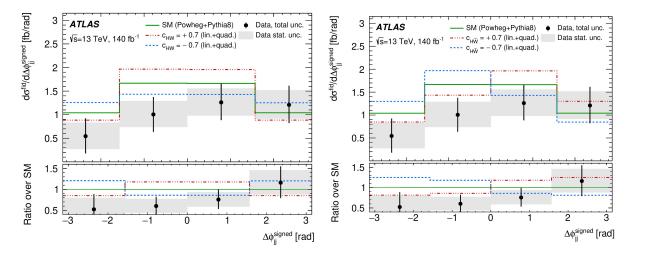
Operators that directly affect the interactions between Higgs Boson and the vector bosons, in the Warsaw basis of the SMEFT formalism:

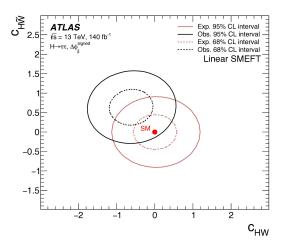

	CP-even			
Operator $O_i^{(d=6)}$	$H^{\dagger}HW^{n}_{\mu u}W^{n\mu u}$	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$H^{\dagger} \tau^n H W^n_{\mu u} B^{\mu u}$	
Wilson coefficient	c_{HW}	C_{HB}	c_{HWB}	
	CP-odd			
Operator $O_i^{(d=6)}$	$H^{\dagger}H ilde{W}^{n}_{\mu u}W^{n\mu u}$	$H^{\dagger}H ilde{B}_{\mu u}B^{\mu u}$	$H^{\dagger} au^n H ilde{W}^n_{\mu u} B^{\mu u}$	
Wilson coefficient	$c_{H\tilde{W}}$	$C_{H\tilde{B}}$	$c_{H\tilde{W}B}$	


$H \rightarrow \tau \tau$ measurement - Differential (SMEFT)

• In the case where two operators are non-zero, a plane of two Wilson coefficients is defined.

- The effect of the c_{HW} and c_{HB} coefficients is very similar, resulting in a "flat direction" where the two Wilson coefficients cancel each other out, leading to no sensitivity from the analysis
- In this case of $c_{H\hat{W}}$ vs c_{HW} , they introduce different shape differences to the $\Delta \phi_{ii}^{signed}$ distribution such that there are no flat directions.





$H \rightarrow \tau \tau$ measurement - Differential (SMEFT)

• In this case of $c_{H\hat{W}}$ vs c_{HW} , they introduce different shape differences to the $\Delta \phi_{ii}^{signed}$ distribution such that there are no flat directions.

symmetry-based leplep	MC-based leplep	MC-based lephad		
Neural Networks, keras	Boosted Decisi	on Trees, TMVA		
$e au$ and μau trained together		separate BDT for $e au$ and μau		
separate NN/BDT per region (nonVBF, VBF)				
# input vars: 18 (nonVBF), 27 (VBF)	# input vars: 15 (nonVBF), 23 (VBF)	# input vars: 12 (nonVBF), 14 (VBF)		
1 NN for nonVBF w/3 classes: signal, symm.bkg., fakes, 3 NNs for VBF: sig vs $Z \rightarrow \tau \tau + MC$ fakes $+ H \rightarrow \tau \tau$, signal vs top $+$ diboson $+ H \rightarrow WW$, signal vs fakes	3 BDTs for both regions: sig vs $Z \rightarrow \tau \tau + Z \rightarrow \ell \ell + H \rightarrow \tau \tau$, signal vs top+diboson+H \rightarrow WW, signal vs fakes	 3 BDTs for nonVBF eτ: signal vs Z→ττ signal vs fakes signal vs rest, 2 BDTS for rest: signal vs Zττ, signal vs rest 		
nonVBF: use sig node distr. in fit, VBF: combine 3 NNs linearly with coefficients c_i , use resulting distr. in fit	combine 3 BDTs linearly with coefficients c_i for each region, use resulting distr. in fit	combine $3/2$ BDTs linearly(quadratically) with coefficients c_i for nonVBF(VBF), use resulting distr. in fit		