Exotic Higgs decays (in ATLAS) Forbidden decays to SM particles & Decays to BSM particles

Shikma Bressler | Higgs24 | November 4-8, 2024

https://www.weizmann.ac.il/particle/bressler/

- $H \rightarrow aa \rightarrow 2b2\tau$ [<u>link</u>]
- $H \rightarrow aa \rightarrow 4\gamma$ [link]
- $H \rightarrow Za \rightarrow 2\ell^2\gamma$
- $H \rightarrow \tau \ell$ [<u>link</u>]

[<u>link</u>]

Physics motivation

- The Higgs could be a window to BSM physics in several avenues
 - Precision measurements of coupling constants
 - \rightarrow search for deviation from the SM predictions
 - Discovery of forbidden decays to SM particles
 - Discovery of decays to BSM particles

Physics motivation

- The Higgs could be a window to BSM physics in several avenues
 - Precision measurements of coupling constants
 - \rightarrow search for deviation from the SM predictions
 - Discovery of forbidden decays to SM particles
 - Discovery of decays to BSM particles

today's talk

Decays to BSM particles

https://www.weizmann.ac.il/particle/bressler/

Decays to BSM particles

- The Higgs is the only known elementary scalar
- Provides a unique window to a variety of light BSM particles
- In particular light scalars and pseudo-scalars that are singles of the SM
- Couplings and hence BRs could be large (up to 12%)
 - Scalar models

B

arXiv:2111.12751

$$r(h \to ss) \simeq rac{v^2 \kappa^2}{32\pi m_h \Gamma_h} \sqrt{1 - rac{4m_s^2}{m_h^2}},$$

$$\begin{split} P(h o aa) &= rac{v^2 m_h^3}{32\pi\Lambda^4} \, |C_h|^2 \left(1 - rac{2m_a^2}{m_h^2}
ight)^2 \sqrt{1 - rac{4m_a^2}{m_h^2}} \,, \\ (h o Za) &= rac{m_h^3 v^4}{64\pi\Lambda^6} \, |C_Z|^2 \,\lambda^{3/2} \! \left(rac{m_Z^2}{m_h^2}, rac{m_a^2}{m_h^2}
ight), \end{split}$$

- Analysis dictated by the properties of the BSM particle
 - Decay products
 - Scalars mix with the SM Higgs \rightarrow Decay preferably to the heaviest SM particles that are kinematically accessible
 - ALPs \rightarrow Some models prefer decays to photons and gluons
 - Vectors \rightarrow Mostly fermion pairs
 - Lifetime
 - Short \rightarrow Prompt decay
 - Medium \rightarrow Displaced vertex
 - Long \rightarrow Invisible decay •
 - Mass
 - Massive particles \rightarrow resolved decay products
 - Light particles \rightarrow merged decay products

- Analysis dictated by the properties of the BSM particle
 - Decay products
 - Scalars mix with the SM Higgs \rightarrow Decay preferably to the heaviest SM particles that are kinematically accessible
 - ALPs \rightarrow Some models prefer decays to photons and gluons
 - Vectors \rightarrow Mostly fermion pairs
 - Lifetime
 - Short \rightarrow Prompt decay
 - Medium \rightarrow Displaced vertex
 - Long \rightarrow Invisible decay •
 - Mass \bullet
 - Massive particles \rightarrow resolved decay products
 - Light particles \rightarrow merged decay products

Each combination requires different analysis \rightarrow collaboration effort

		X																	
		e^{\pm}	μ^{\pm}	τ^{\pm}	Z	W	γ	q/g	с	b	Inv.	ϕ, ρ	$J/\psi, \Upsilon$	$\ell^{\pm}\ell^{\mp}$	$\tau^{\pm}\tau^{\mp}$	$q\bar{q}/gg$	γγ	bb	Other
	e^{\mp}	[12]	[12]	[13]															
	μ^{\mp}		[14]	[13]															
	τ^{\mp}			SM															
	Z/Z^*				SM		[15]				-	-	[3]	[<mark>7</mark>]	_	[3]	-	-	-
	W/W^*					SM													-
	γ						SM				[16]	[17]	[18]	[19]	-	-	-	-	-
	<i>q</i> / <i>g</i>							-	-	-									
	с								[20]										
Y	b									SM									
	Inv.										[21]			-	-	-	-	-	-
	ϕ, ρ											-	-						
	$J/\psi, \Upsilon$												-						
	$\ell^{\pm}\ell^{\mp}$													[7]	[<mark>10</mark>]	-	-	[2]	-
	$\tau^{\pm}\tau^{\mp}$														-	-	-	-	-
	$q\bar{q}/gg$															-	[<mark>6</mark>]	-	-
	γγ																[<mark>9</mark>]	-	-
	bb																	[4, 5]	-
	Other																		Many LLP

Table 1: A summary of the most recent ATLAS results targeting exotic decays of the Standard Model Higgs boson $H \rightarrow XY$, where X is specified by the column in the table and Y is specified by the row. SM indicates that the channel is one of the main Higgs boson characterization channels, Inv. stands for invisible (neutrinos or other weakly interacting BSM), ℓ represents an electron or muon, and q represents a u,d, or s quark. LLP stands for 'long lived particles'. White cells with marked with an "-" indicate channels which are not covered by an ATLAS search. Blue cells are for partial Run 2 results, green cells represent full Run 2 results, black cells represent forbidden (violate electric/color charge or baryon number conservation) or duplicate entries, and orange cells represent Run 1 results. The results that contribute to the summary plots in this note are indicated with squares around the references. Note that the $b\bar{b} + \ell^+\ell^-$ result is only $b\bar{b} + \mu^+\mu^-$ and the $\tau^+\tau^- + \ell^+\ell^-$ result is only $\tau^+\tau^- + \mu^+\mu^-$.

ATL-PHYS-PUB-2021-008

 $\tau^+\tau^- + \ell^+\ell^-$ result is only $\tau^+\tau^- + \mu^+\mu^-$.

Table 1: A summary of the most recent ATLAS results targeting exotic decays of the Standard Model Higgs boson $H \rightarrow XY$, where X is specified by the column in the table and Y is specified by the row. SM indicates that the channel is one of the main Higgs boson characterization channels, Inv. stands for invisible (neutrinos or other weakly interacting BSM), ℓ represents an electron or muon, and q represents a u,d, or s quark. LLP stands for 'long lived particles'. White cells with marked with an "-" indicate channels which are not covered by an ATLAS search. Blue cells are for partial Run 2 results, green cells represent full Run 2 results, black cells represent forbidden (violate electric/color charge or baryon number conservation) or duplicate entries, and orange cells represent Run 1 results. The results that contribute to the summary plots in this note are indicated with squares around the references. Note that the $b\bar{b} + \ell^+\ell^-$ result is only $b\bar{b} + \mu^+\mu^-$ and the

ATL-PHYS-PUB-2021-008

Figure 1: Observed and expected 95% CL upper limits on BR($h \rightarrow aa \rightarrow XXYY$) assuming no other BSM decays, $m_a = 20$ GeV, the *a* decays are prompt (proper lifetime is short, $c\tau \ll 1$ mm), and the predicted Standard Model Higgs boson production cross section is correct within uncertainty. gg indicates an a decay to two gluons.

https://www.weizmann.ac.il/particle/bressler/

Figure 2: Observed and expected 95% CL upper limits on BR($h \rightarrow aa/Za \rightarrow XXYY$) assuming no other BSM decays, $m_a = 2$ GeV, the *a* decays are prompt (proper lifetime is short, $c\tau \ll 1$ mm), and the predicted Standard Model Higgs boson production cross section is correct within uncertainty. gg indicates an a decay to two gluons.

The ATLAS experiment

https://www.weizmann.ac.il/particle/bressler/

 Targeting models in which the new particle mixes with the SM Higgs and inherits its coupling to fermions

- Targeting models with Higgs decay to Axion Like Particles (ALPs) • Sensitive to models proposed to explain the
- - $(g-2)_{\mu}$ discrepancy

 $H \rightarrow aa \rightarrow 4\gamma \quad H \rightarrow Za \rightarrow 2\ell 2\gamma$

arXiv:2312.01942

- Targeting models with Higgs decay to Axion Like Particles (ALPs) and extended scalar sector
- Takes advantage of intermediate Z to enhance signal over background

$H \rightarrow aa \rightarrow 2b2\tau \quad H \rightarrow$

 Targeting models in which the new particle mixes with the SM Higgs and inherits its coupling to fermions

ar	Xiv	23	12.0)3
p				
•		_	H	
) In)- ·		- <
p				

- Targeting models with Higgs decay to Axion Like Particles (ALPs)
 Sensitive to models
- Sensitive to models proposed to explain the

· µ

 $H \rightarrow aa \rightarrow 4\gamma \quad H \rightarrow Za \rightarrow 2\ell 2\gamma$

 $(g-2)_{\mu}$ discrepancy

- Targeting models with Higgs decay to Axion Like Particles (ALPs) and extended scalar sector
- Takes advantage of intermediate Z to enhance signal over background

Shikma Bressler | Higgs24 | November 4-8, 2024

See Nadav's talk

• Targeting models in which the new particle mixes with the SM Higgs and inherits its coupling to fermions

https://www.weizmann.ac.il/particle/bressler/

• Single ℓ triggers

- 9 signal categories
 - τ decay mode
 - 1 b-jet, 2 b-jets, 1 unresolved 2b ("B") jet
- Jet categories classified with a new algorithm

1b)	$(e\mu, 2b)$				
$_{ m d}, 1b)$	$(\mu au_{ m had},\!2b)$				
$_{ m d}, 1b)$	$(e au_{ m had},\!2b)$				
,1b	$_{0B,2b}$				
y-flavor jets					

• Single ℓ triggers

- 9 signal categories
 - τ decay mode
 - 1 b-jet, 2 b-jets, 1 unresolved 2b ("B") jet
- Jet categories classified with a new algorithm

Main ba	ckground
---------	----------

- Drell-Yan of $\tau's$ +jets
- $t\bar{t}$ and single t
- non-prompt $\ell + \tau_{had}$

1 <i>b</i>)	$(e\mu,2b)$			
$_{ m d}, 1b)$	$(\mu au_{ m had},\!2b)$			
$_{ m d}, 1b)$	$(e au_{ m had},\!2b)$			
,1b	$_{0B,2b}$			
y-flavor jets				

Region	eμ	$e au_{ m had}$ or $\mu au_{ m had}$
	1 OS signal $e\mu$ pair	1 OS signal $e\tau_{had}$ or $\mu\tau_{had}$ p
	0 signal $ au_{ m had}$	1 signal $ au_{ m had}$
	$\Delta R(e,\mu) > 0.1$	$\Delta R(\ell, \tau) > 0.2$
Signal region	$4 < m^{\rm vis}(\tau \tau) < 45 { m GeV}$	$4 < m^{\mathrm{vis}}(\tau \tau) < 60 \mathrm{GeV}$
	Σm_T	< 120 GeV
	1 <i>B</i> -jet	or 1 or 2 <i>b</i> -jets
Z region	$m^{\rm vis}(\tau \tau) > 45 { m GeV}$	$m^{\rm vis}(\tau \tau) > 60 { m GeV}$
tt region	$\Sigma m_T > 120 \text{ GeV},$	no $m^{\rm vis}(\tau \tau)$ requirement
SS region	1 SS signal $e\mu$ pair	1 SS signal $e au_{had}$ or μau_{had} particular

Shikma Bressler | Higgs24 | November 4-8, 2024

bair

air

• Single ℓ triggers

- Discriminators

Feature	
$m^{ ext{true}}(au au)$	

 $p_{\rm T}(b^{\rm sublead})$ $p_{\rm T}(bb)$ m(bb) $m^{\rm vis}(bb au au)$ $m^{
m MMC}(bb au au)$

https://www.weizmann.ac.il/particle/bressler/

Variables used as input variables for NN-base classifier b-jet variables important for 2b and B categories

Description

During training: generated <i>a</i> -boson mass for signal MC. Background events are assigned a random value of the eight signal masses.					
During testing: the mass hypothesis under consideration.					
Visible mass of the $\tau\tau$ system.					
$p_{\rm T}$ of the $\tau\tau$ system.					
MMC-based mass of the two neutrinos in $\tau \to e v_{\tau} \bar{v}_e$ or $\tau \to e v_{\tau} \bar{v}_{\mu}$ decays.					
Missing transverse energy.					
Transverse mass calculated with the visible $p_{\rm T}$ of the final-state τ -leptons.					
Transverse momentum of the leading final-state <i>b</i> -jet.					
Visible $p_{\rm T}$ of the $\tau \tau b^{\rm lead}$ system.					
Misalignment between the \vec{E}_T^{miss} vector and the $\tau\tau$ system.					
Categories with a <i>B</i> -jet or 2 <i>b</i> -jets					
Transverse momentum of the subleading final-state <i>b</i> -jet.					
Transverse momentum of the bb system.					
Mass of the bb system.					
Visible mass of the Higgs boson system.					
MMC-based mass of the Higgs boson system.					

prompt leptons)

https://www.weizmann.ac.il/particle/bressler/

 Background modeled from MC corrected in CR (Drell-Yan, $t\bar{t}$) and data (non-

• Statistical analysis - for each m_a with a simultaneous fit to the NN output (in CR, SR1 and SR2 bins) in all 9 categories

prompt leptons)

 Background modeled from MC corrected in CR (Drell-Yan, $t\bar{t}$) and data (non-

- Statistical analysis for each m_a with a simultaneous fit to the NN output (in CR, SR1 and SR2 bins) in all 9 categories
- Mass range varies with m_{α}

simulation between adjacent mass points is used.

Figure 10: The observed (solid) 95% C.L. upper limits on $(\sigma(H)/\sigma_{SM}(H))\mathcal{B}(H \to aa \to b\bar{b}\tau^+\tau^-)$ as a function of m_a and the expected (dashed) limits under the background-only hypothesis when (a) combining all categories and (b) considering different categories based on the heavy-flavor objects separately. In the combined plot (a) the inner green and outer yellow shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The mass hypothesis m_a is probed between 12 and 60 GeV for the values shown with markers. A linear interpolation validated with MC

https://www.weizmann.ac.il/particle/bressler/

• At tree level, the SM predicts four special features of the Yukawa couplings • Proportionality: $\frac{y_i}{y_i} = \frac{m_i}{m_i}$

• Factor of proportionality: $\frac{y_i}{m_i} = \frac{\sqrt{2}}{v}$

- Diagonality: $y_{ij} = 0$ for $i \neq j$ • CP conservation: $Im(\frac{y_i}{m_i}) = 0$
- All four relations are violated by many extensions of the SM
 - SMEFT, 2HDM, vector-like fermions, ...

Y. Grossman and Y. Nir, "The Standard Model: From Fundamental Symmetries to Experimental Tests" Princeton University Press, 2023

• At tree level, the SM predicts four special features of the Yukawa couplings • Proportionality: $\frac{y_i}{y_i} = \frac{m_i}{m_i}$

• Factor of proportionality: $\frac{y_i}{m_i} = \frac{\sqrt{2}}{v}$

- Diagonality: $y_{ij} = 0$ for $i \neq j$ • CP conservation: $Im(\frac{y_i}{m_i}) = 0$
- All four relations are violated by many extensions of the SM
 - SMEFT, 2HDM, vector-like fermions, ...

Precision Higgs measurements

Precision Higgs measurements

today's talk

- ATLAS search for $H \to \ell_1^+ \ell_2^-$ in all $\ell_1^+ \ell_2^-$ combinations
 - $e\mu \rightarrow$

 - Stringent (model dependent) bound from $\mu \rightarrow e\gamma$ experiment Model independent bound from LHC experiment
 - $e\tau$ and $\mu\tau \rightarrow$ most stringent bounds from LHC experiments

arXiv:1303.0754 arXiv:1909.10235

today's talk

$H \rightarrow e \tau / \mu \tau$

arXiv:2302.05225

- Two analysis channels based on au decay mode
 - leplep $H \rightarrow e\tau/\mu\tau \rightarrow e\mu 2\nu/\mu e 2\nu$
 - lephad $H \rightarrow e \tau_{had} / \mu \tau_{had}$

$H \rightarrow e \tau / \mu \tau$

arXiv:2302.05225

- Two analysis channels based on τ decay mode
 - leplep $H \rightarrow e\tau/\mu\tau \rightarrow e\mu 2\nu/\mu e 2\nu$
 - lephad $H \rightarrow e \tau_{had} / \mu \tau_{had}$
- Two analysis categories based on Higgs production
 - non-VBF (mostly ggH)
 - VBF
- Two background estimation method
 - MC template
 - e/μ symmetry based

Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$
	exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{had-vis}$
	$ au_{ m had}$ -veto	$ au_{ m had}{ m TightID}$
Rasalina	_	Medium eBDT ($e\tau_{ha}$
Duseime	<i>b</i> -veto	<i>b</i> -veto
	$p_{\rm T}^{\ell_1}$ > 45 (35) GeV MC-template (Symmetry method)	$p_{\mathrm{T}}^{\ell} > 27.3 \mathrm{GeV}$
	$p_{\rm T}^{\ell_2} > 15 {\rm GeV}$	$p_{\rm T}^{\tau_{\rm had-vis}} > 25 {\rm GeV}, \eta^{\tau_{\rm had-vis}} $
	$30 \text{GeV} < m_{\ell_1 \ell_2} < 150 \text{GeV}$	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss}) >$
	$0.2 < p_{\rm T}^{\rm track}(\ell_2 = e)/p_{\rm T}^{\rm cluster}(\ell_2 = e) < 1.25 \text{ (MC-template)}$	$ \Delta\eta(\ell, \tau_{\text{had-vis}}) < 2$
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$	
	Baseline	
VBF	≥ 2 jets, $p_T^{j_1} > 40$ GeV, $p_T^{j_2} > 30$	0 GeV
	$ \Delta \eta_{jj} > 3, m_{jj} > 400 \text{GeV}$	
	Baseline plus fail VBF categori	sation
non-VBF		veto events if
	—	$90 < m_{\mathrm{vis}}(e, \tau_{\mathrm{had-vis}}) < 10$

$H \rightarrow e\tau/\mu\tau$

arXiv:2302.05225

- Two analysis channels based on τ decay mode
 - leplep $H \rightarrow e\tau/\mu\tau \rightarrow e\mu 2\nu/\mu e 2\nu$
 - lephad $H \rightarrow e \tau_{had} / \mu \tau_{had}$
- Main background sources
 - leplep: $Z \rightarrow \tau \tau$, $t\bar{t}$, diboson, non prompt ℓ
 - lephad: $Z \rightarrow \tau \tau$, diboson, mis-identified τ

$H \rightarrow e \tau / \mu \tau$ MC template method

arXiv:2302.05225

- leplep & lephad

 - methods

• Background from prompt leptons estimated from MC normalized to data in dedicated CRs • Background from non prompt leptons or mis-identified ones modeled with data driven

$H \rightarrow e \tau / \mu \tau$ symmetry method

arXiv:2302.05225

- Two underlying assumptions
 - High energy SM processes are symmetric under the exchange of prompt electrons with prompt muons to a good approximation. As a consequence, the kinematic distributions of prompt electrons and prompt muons are approximately the same
 - Flavour-violating decays of the Higgs boson break this symmetry
- leplep channel $H \to \mu \tau \to \mu e 2\nu$ results in events with $p_T^\mu > p_T^e$
 - Use events with $p_T^e > p_T^\mu$ to model background of events with $p_T^\mu > p_T^e$
 - Correct for detector effects that break the symmetry
 - Trigger, reconstruction, identification and isolation efficiency
 - Events with non prompt leptons

https://www.weizmann.ac.il/particle/bressler/

$H \rightarrow e \tau / \mu \tau$ symmetry method

arXiv:2302.05225

- Correction works well
 - In MC when only efficiency correction applied

$H \rightarrow e \tau / \mu \tau$ symmetry method

arXiv:2302.05225

- Correction works well
 - In MC when only efficiency correction applied
 - In data when also non-prompt leptons estimated
 - An excess in one final state translates into a deficit in the other channel

$H \rightarrow e \tau / \mu \tau$ bottom line

arXiv:2302.05225

• Final results obtained by combining the most sensitive approach in each region and category

https://www.weizmann.ac.il/particle/bressler/

$H \rightarrow e \tau / \mu \tau$ bottom line

arXiv:2302.05225

- Final results obtained by combining the most sensitive approach in each region and category
- Symmetry based analysis sensitive to difference in decay rates

https://www.weizmann.ac.il/particle/bressler/

$H \rightarrow e \tau / \mu \tau$ bottom line

arXiv:2302.05225

- Final results obtained by combining the most sensitive approach in each region and category
- Symmetry based analysis sensitive to difference in decay rates
- MC template method allow fitting with 2 POIs

https://www.weizmann.ac.il/particle/bressler/

Conclusions

- We have done a lot
 - Set unique bounds on features of light, SM-singlet (pseudo)scalars • We set strong(est) model-independent bounds on off-diagonal Yukawa couplings leading to significant constraints on SMEFT, 2HDM, vector-like fermions
- Yet, we have done too little
 - BSM physics could easily still be just behind the corner
- Room for improvement of existing searches
- Room for new searches
- Room for new methods
- Room for new approaches

https://www.weizmann.ac.il/particle/bressler/

