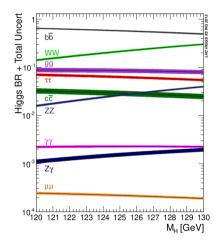


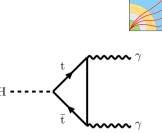
Measurements of the Higgs boson mass and width at CMS

R. Gargiulo 12

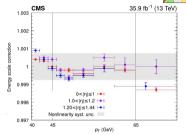

¹Sapienza University of Rome, ²INFN Section of Rome-1

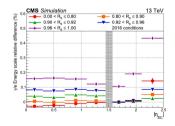
Higgs2024, Uppsala, Tue 5th Nov, 2024

Introduction


- Higgs boson mass (m_H) not predicted by the Standard Model (SM)
- However, all Higgs boson characteristics depend on m_H
- ► Mass measured precisely in two channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l$
- ► Decay width (Γ_H) predicted precisely → deviations may hint at new physics
- Γ_H constrained with $H \to ZZ$, both directly from lineshape and indirectly from off-shell measurements

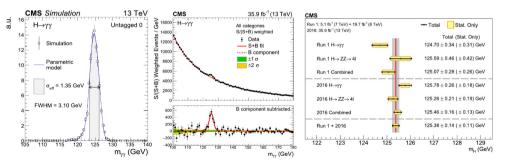
Mass measurement in $H \rightarrow \gamma \gamma$


- Clean final state with 0.23% branching ratio
- Early Run 2 analysis with 2016 data (36 fb⁻¹): Phys. Lett. B, 805 (2020)
- After ECAL calibration of E_γ, MC correction (mainly for cluster containment) applied using multi-variate regression
- Data/MC residual corrections to E_γ scale and resolution derived from Z → ee treating e as γ:
 - Per-LHC fill shifts in scale due to radiation
 - η - R_9 dependence (high $R_9 \leftrightarrow \gamma$ conversions)
 - η - p_T dependence (due to non-linearity)



Systematic Uncertainties

- ► E_{γ} scale and resolution errors assessed by varying $Z \rightarrow ee$ selection criteria
- ► Residual *p*_{*T*}-dependent scale corrections errors:
 - Corrections from Z(ee) ($p_T \approx 45 \text{ GeV}$) extended to $H \rightarrow \gamma \gamma$ ($p_T \approx 60 \text{ GeV}$)
 - ► Residual corrections reapplied → deviations from unity treated as systematic errors
- Non-uniformity of light collection caused by radiation damage on ECAL crystals:
 - Photons (high R9) have deeper showers than electrons (used to calibrate)
 - Error estimated with Geant4 + light-tracing simulations
 - + test beam data with irradiated crystals


Results

- ► Binned fit performed in 7 categories based on σ_m , with $\langle \sigma_m \rangle \approx$ 1.68 GeV and $\sigma_m = 1.32$ GeV in the best category
- ► Result:

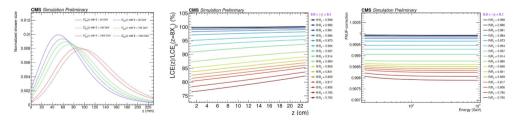
 $m_H = 125.78 \pm 0.18$ (stat.) ± 0.18 (syst.)

- Measurement precision is at the per-mille level
- Large uncertainty (0.11 GeV) from light collection non-uniformity

Correction of light collection non-uniformity

- In view of full Run 2 analysis this effect is corrected, otherwise its syst. uncertainty would dominate
- ► Light collection efficiency as a function of depth (z) simulated (CMS-DP-24-045) to determine energy scale corrections → dedicated uncertainty assigned to the correction

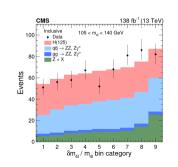
$$F = \frac{S^e}{S^{\gamma}} = \frac{\frac{\int E^e_{dep}(z) \times \text{LCE}(z; \text{ R/R}_0, \eta) \, dz}{\int E^e_{dep}(z) \, dz}}{\frac{\int E^{\gamma}_{dep}(z) \times \text{LCE}(z; \text{ R/R}_0, \eta) \, dz}{\int E^{\gamma}_{dep}(z) \, dz}}$$

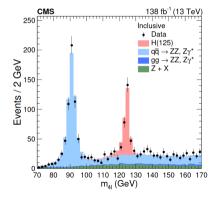

- ► S_e (S_γ): ECAL response to electrons (photons)
- ► E_{dep}(z): shower profile in PbWO₄ (Geant4)
- LCE(z): Light Collection Efficiency, simulated with Fluka+Light-tracing (Litrani code)
- ► R/R₀: ECAL laser response measured in data → per-run corrections possible

Correction of light collection non-uniformity

- Key elements include electron/photon shower profiles (Geant4) and light collection efficiency in ECAL (Fluka + Litrani) depending on crystal transparency
- This approach should significantly reduce uncertainty in full Run 2 mass measurement

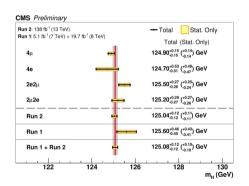
(shower profile)


(light collection efficiency)


(correction)

Mass measurement in $H \rightarrow ZZ \rightarrow 4l$

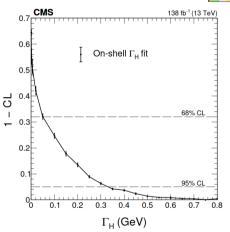
- Full Run 2 analysis (138 fb⁻¹) submitted to PRD: arXiv:2409.13663
- Analysis improved from early studies:
 - 4-lepton tracks constrained to vertex within beam spot
 - One Z boson constrained to be on-shell
 - Categorization based on σ_m/m
 - Used kinematic discriminant to reduce background



Results

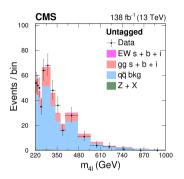
- Maximum likelihood fit performed using m_{4l} and a kinematic discriminant D_{bkg} to reduce background
- Major systematic uncertainties come from lepton scale (0.03% for μ and 0.15% for e)
- ► Result:

 $m_H = 125.04 \pm 0.11$ (stat.) ± 0.11 (syst.)


 Most precise single-channel Higgs mass measurement to date

On-shell direct Γ_H measurement in $H \to ZZ \to 4l$

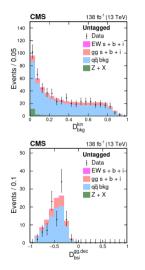
- Mass fit performed with Double Crystal Ball function convoluted with a Breit-Wigner to bound Γ_H
- ► Γ_H < 50 (330) MeV at 68 (95) % C.L.</p>
- Direct measurement limited by mass resolution
- Need to use off-shell measurement to get good precision



Off-shell indirect Γ_H **Measurement**

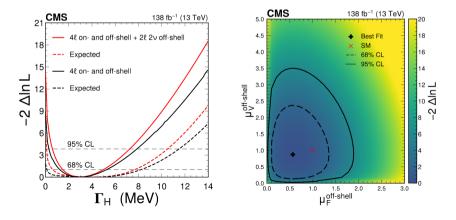
- Measurement performed with both 4l and $2l2\nu$
- ► Off-shell Γ_H measurement based on strong theoretical assumptions:
 - ► Off-shell/on-shell coupling ratio known $\rightarrow \mu_{off-shell} \propto \sqrt{\Gamma_H}$
 - ggH loops dominated by top (no BSM)
- Large interference between off-shell signal and continuum background

 $ightarrow \mu_{off-shell} = 0$ excluded at $> 3\sigma$



$$\mathcal{P}_{jk}(\vec{x};\vec{\xi}_{jk},\vec{\zeta}) = \frac{\mu_j \Gamma_{\rm H}}{\Gamma_0} \,\mathcal{P}_{jk}^{\rm sig}(\vec{x};\vec{\xi}_{jk}) + \sqrt{\frac{\mu_j \Gamma_{\rm H}}{\Gamma_0}} \,\mathcal{P}_{jk}^{\rm int}(\vec{x};\vec{\xi}_{jk}) + \mu_j \,\mathcal{P}_{jk}^{\rm cross}(\vec{x};\vec{\xi}_{jk}) + \mathcal{P}_{jk}^{\rm bkg}(\vec{x};\vec{\xi}_{jk})$$

Analysis strategy



- Three kinematical discriminants built from matrix-elements to tag VBF, WH, ZH
- Events separated in VBF-Tagged, VH-Tagged and Untagged categories
- ► Two additional kinematical discriminants *D*_{bkg}, *D*_{int} build to tag interference and background
- Performed fit with observables: m_{4l} , D_{bkg} , D_{int}

Results

- Best bound on Γ_H to date: $\Gamma_H = 3.0^{+2.0}_{-1.5}$ MeV
- ► µ_{off-shell} evaluated for both ggH (fermion coupling) and EW (boson coupling) Higgs production modes using different categories

- CMS measured Higgs boson mass and width with high-mass-resolution channels: $\gamma\gamma + ZZ$
- ► Most precise single-channel measurement on m_H in $H \rightarrow ZZ \rightarrow 4l$ made with full Run2 data
- Made studies to reduce uncertainty caused by light collection non-uniformity for full Run2 mass measurement in $H \rightarrow \gamma \gamma$
- Γ_H bounded effectively with off-shell Higgs boson production in $H \rightarrow ZZ$

Backup

$H\to\gamma\gamma$ systematic uncertainties impacts

- Leading sources of systematic uncertainty:
 - electron energy scale and resolution correction
 - residual p_T dependence of photon energy scale
 - nonuniformity of light collection

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26