Searches for Axion-Like Particles in ATLAS

*Not always strictly ALPs and not always strictly in Higgs decays

Nadav Michael Tamir O.B.O the ATLAS Collaboration

Higgs 2024, Uppsala, 05/11/2024

Introduction

Axion-like-particles (ALPs) 1708.00443, 2110.10698, 2111.12751 and many more...

- ALPs can **appear generically** in many SM extensions
 - Solutions to **strong CP problem** (a-la PQ symmetry breaking and the QCD Axion)
 - Can serve as hidden-sector mediators ("Axion Portal") and/or trigger baryogenesis
 - Or just as **pNGB's** in the **EFT** of UV extensions with (approximate) **global SSB**
 - **Couplings** to SM fermions/gauge bosons via **dimension-5** operators: $\mathcal{L}^{(D \leq 5)} \supset \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F} + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G^{A}_{\mu\nu} \tilde{G}^{\mu\nu,A}$ $+ g^{2} C_{WW} \frac{a}{\Lambda} W^{A}_{\mu\nu} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$
- Couplings to SM higgs via dimension-6 (Haa) and dimension-7 (hZa) operators: $\mathcal{L}^{(D\geq 6)} \supset \frac{C_h}{\Lambda^2} (\partial_\mu a) (\partial^\mu a) \phi^{\dagger} \phi + \frac{C_{Zh}}{\Lambda^3} (\partial^\mu a) (\phi^{\dagger} i D_\mu \phi + h.c.) \phi^{\dagger} \phi$
- Extremely general, allowing a very rich phenomenology!

Axion-like-particles (ALPs) 1708.00443, 2110.10698, 2111.12751 and many more...

- Two key points to keep in mind, will play a part...
 - Two-body decay $\Delta R \approx \frac{2m_a}{p_{T,a}} \rightarrow \text{collimated decay products?}$ • $\Gamma_{a \rightarrow VV} \propto m_a^3 |C_{VV}|^2$, $\Gamma_{a \rightarrow f\bar{f}} \propto m_a m_f^2 |C_F|^2 \rightarrow \text{prompt or long-lived?}$
- Current ATLAS bounds still allow sizable BSM Higgs BRs
 - Br(H→undetected) < 12% (2207.00092 & Nature 607)
 - Br(H→invisible) < 10.7% (<u>2301.10731</u> & <u>PLB 842</u>)
- ATLAS limits on H→aa (prompt a's) summarized in <u>ATL-PHYS-PUB-2021-008</u>, but...
 - $\circ~$ Some "outdated" (e.g. $\mu\mu\tau\tau$)
 - Many **advancements** (e.g. GN2)
 - Some uncovered signatures...
 - We want more in these plots!
 - So, let's see **some new results!**

Searches in Higgs Boson Decays

$H \rightarrow Z(U)a(\gamma\gamma)$ 2312.01942 & PLB

- Exploring $m_a \in (0.1, 33)$ GeV
- **"Resolved" SR** (≥2 photons) for large m_a:
 - $\circ \Delta R_{\gamma\gamma} < 1.5 \& \Delta R_{\gamma\gamma} p_{T,\gamma\gamma} / (2m_{\gamma\gamma})$ ratio compatible with unity
 - Calorimeter + (optionally) track-based photon isolation
 - $\circ~~m_{_{Z\gamma\gamma}}$ compatible with Higgs mass
- **"Merged" SR** (≥1 photons) for small m_a (failing resolved):

 - Track-based photon isolation only
 - \circ m_{zy} compatible with Higgs mass

$H \rightarrow Z(II)a(\gamma\gamma)$ 2312.01942 & PLB

- "Resolved" SR (≥2 photons) for large m_a:
 - **Fit to m**_{yy} using analytic functions
 - Data-driven background estimate from sideband CRs
- **"Merged" SR** (≥1 photons) for small m_a (failing resolved):
 - Photon cluster energy maxima used to suppress Z+Jets
 - $\circ~$ Fit to $\Delta R_{_{Z^{\gamma}}}$ with background shape corrections from data in CRs

$H \rightarrow Z(II)a(\gamma\gamma)$ 2312.01942 & PLB

- Post-fit distributions show **no significant excess**
- Limits on BR(H \rightarrow Za)×BR(a $\rightarrow\gamma\gamma$) of ~0.08%-2%

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma \gamma 2312.03306$ & EPJC

- Exploring m_a ∈ (0.1, 62) GeV, prompt + long-lived ALPs
- Displaced photons for long-lived ALP sensitivity
 - Consider scenarios with $|C_{\gamma\gamma}|$ as low as 10⁻⁵ (!)
 - Dedicated uncertainties for displaced tracks/vertices
- Track-based photon isolation
- Two-staged NN approach to merged photon ID
 - First NN classifies real photons VS jet fakes
 - Second NN classifies single VS merged photons
 - Both use **same set of shower-shape** variables
 - Photon passing **cuts on both NNs** classified as merged
 - Dedicated uncertainties for NN classifier

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$ 2312.03306 & EPJC

- Event categories defined by photon multiplicities
 - **nS** = n **Single** photons ; **nM** = n **Merged** photons
 - m_{inv} reconstructed in all event categories
 - m_a reconstructed in 3S and 4S categories, pairings from
 dedicated NN's trained on kinematic information
- Fitting reconstructed m_{inv} in all categories
- Data-driven background estimates from sidebands

Model Parameters	Signal Region Definition				
Long-lived ALP Search: $C_{a\gamma\gamma} < 0.1$					
	2M, 1M1S and 2S Categories				
$0.1 \text{ GeV} \le m_a < 3.5 \text{ GeV}$	$115 \text{ GeV} < m_{inv}^{reco} < 130 \text{ GeV}$				
	3S Category	4S Category			
$3.5 \text{ GeV} \le m_a < 10 \text{ GeV}$	$105 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$			
	$0 \text{ GeV} < m_a^{\text{reco}} < 10 \text{ GeV}$	$0 \text{ GeV} < m_a^{\text{reco}} < 12 \text{ GeV}$			
$10 \text{ GeV} \le m_a < 25 \text{ GeV}$	$100 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 125 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$			
	$6 \text{ GeV} < m_a^{\text{reco}} < 26 \text{ GeV}$	$8 \text{ GeV} < m_a^{\text{reco}} < 28 \text{ GeV}$			
$25 \text{ GeV} \le m_a < 40 \text{ GeV}$	$100 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 125 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$			
	$20 \text{ GeV} < m_a^{\text{reco}} < 40 \text{ GeV}$	$23 \text{ GeV} < m_a^{reco} < 43 \text{ GeV}$			
$40 \text{ GeV} \le m_a \le 62 \text{ GeV}$	$90 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 115 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$			
	$30 \text{ GeV} < m_a^{\text{reco}} < 65 \text{ GeV}$	$38 \text{ GeV} < m_a^{\text{reco}} < 65 \text{ GeV}$			
Prompt ALP Search: $0.1 < C_{a\gamma\gamma} < 1$					
	$4S_p$ Category				
$5 \text{ GeV} \le m_a < 25 \text{ GeV}$	$120 \text{ GeV} < m_{inv}^{reco} < 130 \text{ GeV}$				
	$ m_a - m_a^{\text{recoil}} < 1 \text{ GeV}$				
$25 \text{ GeV} \le m_a < 40 \text{ GeV}$	$120 \text{ GeV} < m_{inv}^{reco} < 130 \text{ GeV}$				
	$ m_a - m_a^{\text{reco}} < 2 \text{ GeV}$				
$40 \text{ GeV} \le m_a < 50 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$				
	$ m_a - m_a^{\text{reco}} < 3 \text{ GeV}$				
$50 \text{ GeV} \le m_a < 55 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$				
	$ m_a - m_a^{\text{reco}} < 5 \text{ GeV}$				
$55 \text{ GeV} \le m_a \le 62 \text{ GeV}$	$120 \text{ GeV} < m_{\text{inv}}^{\text{reco}} < 130 \text{ GeV}$				
	$ m_a - m_a^{\text{reco}} < 8 \text{ GeV}$				

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$ 2312.03306 & EPJC

- No significant excess observed
- BR(H \rightarrow aa)×BR(aa \rightarrow 4 γ) **limits span ~3 OOMs**
- Strong constraints placed on parameter

space, extending to long-lived ALPs!

Searches Without Higgs Boson Decays

Low-mass $a \rightarrow \mu \mu$ with $t\overline{t}$ 2304.14247 & PRD

- Exploring $m_a \in (15, 72)$ GeV
- Considering two different signal models
 - tta associate production (limits on $\sigma \times BR$)
 - $t\bar{t}$ with $t \rightarrow H^{\pm}b$, $H^{\pm} \rightarrow W^{\pm}a$ [$m_{\mu} \in (120, 160)$ GeV]
- **Events categorized** as μμμ/eμμ
- Fit to **m**___ **spectrum** in the SR
- Signal m___ modelled as DSCB and extrapolated
- CR to estimate dominant ttZ normalization
- Fake-μ from "isolation-sideband" data (FF's)
 - In all regions, most constrained by tt-CR
- **Dominant uncertainty** from statistics

	Sign	al Regions	on-Z Con	tī Control Region		
Channel	еµµ µµµ		еµµ	μμμ	еµµ	
Binning	$m^a_{\mu\mu}$ $m^a_{\mu\mu}$		njets, nb-jets	$n_{\text{jets}}, n_{b-\text{jets}}$	$p_{\mathrm{T}}^{\mu,\mathrm{fake}}$	
nelectrons	1	0	1	0	1	
n _{muons}	2	3	2	3	2	
	$12 < m^a_{\mu\mu} < 77$	$12 < m^a_{\mu\mu} < 77$	$77 < m^a_{\mu\mu} < 107$	$77 < m^a_{\mu\mu} < 107$	$12 < m^a_{\mu\mu} < 77$	
$m_{\mu\mu}$ [GeV]		and		or		
	-	$m_{\mu\mu}^{\text{other}} < 77 \text{ or} > 107$	-	$77 < m_{\mu\mu}^{\text{other}} < 107$	-	
n _{jets}		1 or 2				
n _{b-jets}		1				

60

muu [GeV]

Low mass $a \rightarrow \gamma \gamma$ 2211.04172 & JHEP

- Exploring $m_a \in$ (10 , 70) GeV
- Consider **prompt ALP** scenarios
- Two isolated photons, fit to **m**_{yy} **spectrum**
- $p_{T}(\gamma\gamma)>50$ GeV **flattens** background, **boosted** $\gamma\gamma$
- **Signal m**_{yy} **modelled** as DSCB and extrapolated
- Background modelled as analytic function
 - $\circ~\gamma\gamma$ from simulation, $\gamma\text{+jets}$ and dijet from data
 - Relative fractions obtained from **2D sidebands**
 - Gaussian-Processes background template smoothing significantly reduces spurious signal uncertainty
- Fiducial volume defined with truth-level cuts
- Parameterized signal detection efficiency correction factor

Data

🔺 yi+iy

m_{yy} [GeV]

Low mass $a \rightarrow \gamma \gamma$ 2211.04172 & JHEP

Data consistent with background prediction, small excess

at $m_{\rm a}\text{=}$ 19.4 GeV with ~3.1 σ (1.5 σ) local (global) significance

• Limits on σ_{fid} *BR between 4-17 fb are interpreted in the parameter space of a prompt ALP model (KSVZ-ALP)

There Will Be More...

Summary and Conclusions

- ALPs appear generically in many extensions of the SM with (approximate) global SSB
- ATLAS has a rich ALP (and low-mass ALP-like) search program, covering a motivated wide

mass/coupling range in multiple final-states, both prompt and long-lived

- Complementary to similar searches in CMS and to constraints from other experiments
- Presented several ATLAS results for searches with and without Higgs decays
 - Most have performed interpretation in ALP parameter space yielding robust constraints (not bad!)
 - So indeed we have some additions and updates to those old summary plots (great success!)
 - We'll keep working hard to produce more results and cover new signatures (great effort!)
 - Shout-out to **low-mass a** $\rightarrow \tau \tau$, aka "Holy moly that's a lotta MET" (2409.20381, submitted to JHEP)
- Stay (not fine-) tuned, there will be more ("*Run3, precious?"*), and **may the ALPs be with you**!

Thanks for your attention!

- $H \rightarrow aa \rightarrow bb\tau\tau 2407.01335 \& PRD$
- Exploring $m_a \in (12, 60)$ GeV
- Using novel X→bb tagger (<u>DeXTer</u>)
 - \circ Low-p_T reclustered R=0.8 track-jet classifier
 - DeepSet-based, jet+track+SV features
 - Greatly enhances low-m_a sensitivity
 - Calibrated in data for efficiency corrections
- Event categories defined by ττ decay mode and b/B-jet multiplicities
- CRs to control background contributions
- pNN event discriminant for each category
- Simultaneous fit in three pNN bins
 (2SR+CR) across all 9 categories

$H \rightarrow aa \rightarrow bb\tau\tau 2407.01335 \& PRD$

- No significant excess observed
- Limits on BR(H \rightarrow aa)×BR(aa \rightarrow bb $\tau\tau$) between 2%-4%
- Assuming SM Higgs production cross-section

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma \gamma 2312.03306$ & EPJC

Modelling of (corrected) shower shape variables in displaced vertex reconstruction

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma 2312.03306$ & EPJC

• Shower shape variables in resolved (MC), merged (MC) and fake (data) photons

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$ 2312.03306 & EPJC

- More m_{inv} distributions with sideband fits
- 2D sideband plots in 4S_p region in simulation

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma \gamma 2312.03306$ & EPJC

Category	m _a	$C_{a\gamma\gamma}$	MC-Stat	Standard	Custom	Trigger	Pile-Up	Modelling/	Combined
	[GeV]		[%]	Photon [%]	Photon [%]	[%]	[%]	Theory [%]	[%]
28	0.5	1	2.12	2.5	2.0	7.4	1.3	3.3	9.06
1S1M	0.5	1	1.64	2.1	5.0	2.5	2.1	3.3	7.32
2M	0.5	1	1.39	2.4	10.3	2.4	2.3	3.3	11.65
28	1	1	2.77	2.6	1.5	6.4	1.3	3.3	8.38
1S1M	1	1	2.29	2.1	5.0	2.6	2.1	3.3	7.53
2M	1	1	2.27	2.4	10.3	2.5	2.3	3.3	11.81
2S	3	1	1.35	2.9	1.1	6.5	1.3	3.3	8.14
1S1M	3	1	3.82	2.2	5.0	1.9	2.1	3.3	7.96
2M	3	1	14.0	2.2	10.3	1.8	2.3	3.3	18.07
Prompt									
4S	5	1	3.03	9.86	0.0	2.7	3.4	2.1	11.39
4S	10	1	2.36	8.8	0.0	3.2	3.4	2.1	10.45
4S	20	1	2.45	8.6	0.0	2.5	3.4	2.1	10.11
4S	30	1	2.54	8.1	0.0	1.3	3.4	2.1	9.47
4S	40	1	2.34	8.4	0.0	1.4	3.4	2.1	9.69
4S	50	1	1.83	8.7	0.0	1.5	3.4	2.1	9.86
Long-Lived									
4S	10	10 ⁻⁵	37.8	6.496	22.2	0.4155	3.6	3.3	44.59
4S	20	10 ⁻⁵	3.39	7.11	27.17	2.603	3.6	3.3	28.82
4S	30	10^{-5}	2.55	8.388	9.884	1.321	3.6	3.3	14.15
4S	40	10^{-5}	2.25	8.701	3.753	2.183	3.6	3.3	11.11
4S	50	10^{-5}	1.65	8.185	3.259	1.816	3.6	3.3	10.37

Low mass $a \rightarrow \gamma \gamma$ 2211.04172 & JHEP

Low mass $a \rightarrow \gamma \gamma$ 2211.04172 & JHEP

