STXS and differential cross section measurements at CMS, bosonic channels

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Differential cross sections and STXS

Fiducial Cross Sections

Allows a characterisation of the Higgs boson in different regions while being as model-independent as possible

Simplified Template Cross Sections

Maximise sensitivity to isolate BSM effects while reducing theory dependence

JHEP 07 (2021) 027

Run 2 combinations refer to Massimiliano Galli's talk at 11:10 in this session

Will be covered in this talk

$H \rightarrow ZZ \rightarrow 4\ell$ measurement

Electron BDT with a better performance w.r.t Run 2

CMS-PAS-HIG-24-013

Low BR but clean final state and high S/B

Precise identification and calibration of low p_T muons and electrons is crucial Z peak used for e and μ calibration, Low p_T muons benefits from J/ψ Dedicated BDT for low pt electrons and usage of "tracker" muons

$H \rightarrow ZZ \rightarrow 4\ell$ measurement

- The measurement is performed using an unbinned maximum likelihood fit to the data
- Largest source of experimental uncertainty being the <u>electron efficiency</u>

Inclusive fiducia	l cross section
Observed	Ex
$2.94^{+0.53}_{-0.49}(stat.)^{+0.29}_{-0.22}(syst.)$ fb	3.09

Caio Daumann - RWTH Aachen

$H \rightarrow \gamma \gamma$ at 13.6 TeV

Sharp peak over a smoothly falling background

Mass resolution has an important role in the analysis

Caio Daumann - RWTH Aachen

New columnar analysis framework, processing lightweight datasets

Suppression of non prompt photons done by a BDT

Higgs2024

σ_m/m and Photon identification score correction

- Largest source of systematics in past analyses were related to the mismodeling of the ID inputs and σ_m/m
- A new method based on a single normalising flow is used to perform the ID inputs and σ_m/m corrections
- The method is capable of correcting non-continuous distributions, such as isolations

More details in the plenary talk by Davide and Johannes talk on Friday at 11

Photon ID and σ_m/m categorisation • Flow model is trained using $Z \rightarrow ee$ probes

- Excellent agreement in the individual variables and the photon ID inputs (impact of 1%) and σ_m/m
- Besides the marginal distributions, the correlations also improve

Caio Daumann - RWTH Aachen

Validation with real photons

Higgs2024

1.0

Signal and background models

- Signal and background models are constructed using parametric functions
- σ_m/m boundaries are defined by optimizing the expected significance

Caio Daumann - RWTH Aachen

$$\frac{\sigma_m}{m} = \frac{1}{2} \sqrt{\left(\frac{\sigma_{E_1}}{E_1}\right)^2 + \left(\frac{\sigma_{E_2}}{E_2}\right)^2}$$

Due to calorimeter resolution, σ_m/m is decorrelated w.r.t $m_{\gamma\gamma}$ distribution in order to have a smoothly falling background

The $H \rightarrow \gamma \gamma$ measurement

A new fiducial requirement on geometric mean is ap

• Improved perturbative convergence in phase space (2106.08329)

Inclusive fiducial cross sections	
Observed	Exp
$78^{+11}_{-11}(stat.)^{+6}_{-5}(syst.)$ fb	67.8

Inclusive fiducial cross sections			
Observed	Expected		
$78^{+11}_{-11}(stat.)^{+6}_{-5}(syst.)$ fb	67.8 ± 3.8 fb		
Systematic uncertainty	Magnitude		
Photon energy scale and resolution	tion group $+5.8\%/-4.9\%$		
Category migration from energ	y resolution $+3.5\%/-3.9\%$		
Integrated luminosity	$\pm 1.4\%$		
Photon preselection efficiency	$\pm 1.4\%$		
Energy scale non-linearity	+0.8%/-1.6%		
Photon identification efficiency	$\pm 1.0\%$		
Pileup reweighting	±0.8%		

oplied:
$$\sqrt{p_T^{\gamma_1} p_T^{\gamma_2} / m_{\gamma\gamma}} > 1/3$$

Differential cross sections

Caio Daumann - RWTH Aachen

Summary

Caio Daumann - RWTH Aachen

HIG-23-013

Galli's talk at 11:10 in this session

Backup slides

$H \rightarrow ZZ$ fiducial phase space

Table 12: Summary of requirements and selections used in the definition of the fiducial phase space for the H $\rightarrow 4\ell$ cross section measurements.

Requirements for the H $ ightarrow 4\ell$ fiducial phase space			
Lepton kinematics and isolation			
leading lepton $p_{\rm T}$	$p_{\rm T} > 20~{ m GeV}$		
next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10~{ m GeV}$		
additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$		
pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$		
$p_{\rm T}$ sum of all stable particles within $\Delta R < 0.3$ from	m lepton less than $0.35 \cdot p_{\rm T}$		
Event topology			
existence of at least two SFOS lepton pairs, where leptons satisfy criteria above			
inv. mass of the Z ₁ candidate	$40 \text{GeV} < m(Z_1) < 120 \text{GeV}$		
inv. mass of the Z ₂ candidate	$12 \text{GeV} < m(Z_2) < 120 \text{GeV}$		
distance between selected four leptons	$\Delta R(\ell_i \ell_i) > 0.02$ for any $i \neq j$		
inv. mass of any opposite sign lepton pair	$m(\ell^+\ell'^-) > 4 \text{GeV}$		
inv. mass of the selected four leptons	$105 { m GeV} < m_{4\ell} < 140 { m GeV}$		
the selected four leptons must originate from the H $ ightarrow 4\ell$ decay			

$H \rightarrow \gamma \gamma$ photon ID

$H \rightarrow \gamma \gamma$ photon ID corrections

