Searches for resonances decaying to pairs of Higgs bosons at ATLAS Higgs2024, Uppsala Maggie Chen

University of Oxford on behalf of the ATLAS collaboration

Theoretical motivations

Sensitive to BSM physics – effects parametrised by resonance mass m_x

→ signals have a peak in m_{HH} → constrains free parameters in the BSM models

 $X \to HH$

SM Higgs mixing with additional scalars

X

• 2 additional singlets (TRSM)

 $X \rightarrow SH$

 2-Higgs-doublet + singlet (2HDM+S) including NMSSM

Common in all extended Higgs sectors

- Additional weak isospin singlets, doublets, triplets (2HDM, MSSM)
- Warped extra dimensions \rightarrow generic resonances

$X \rightarrow HH$ combination

meiqi.chen@cern.ch

$X \rightarrow HH$ combination

Type-I 2HDM constraints

Sensitive to $\cos(\beta - \alpha)$ values not probed by SM Higgs boson coupling measurements

E.g. $\cos(\beta - \alpha) = -0.1$, $\tan \beta = 10$, $270 < m_H < 810$ GeV excluded

2HDM – extends the SM with an additional Higgs doublets After EWSB, leads to:

3 neutral Higgs: h, H (CP-even), and A (CP-odd) 2 charged Higgs: H^{\pm}

<u>Free parameters</u>: tan β (ratio of vev of the 2 Higgs doublets)

 α (mixing angle between CP-even Higgs) m_H (mass of the heavy CP-even Higgs H)

Fixed $\tan \beta$

MSSM constraints

Combination excludes region $2 < \tan \beta < 5$

• Not excluded by $H/A \rightarrow \tau\tau, A \rightarrow Zh, H \rightarrow ZZ$ or $H^{\pm} \rightarrow tb$ searches!

 $M_{h,EFT}^{125}$

 $M_{h,EFT}^{125}(\tilde{\chi})$

MSSM – a. subset of type II 2HDM

SUSY constrains the number of <u>free parameters</u> to 2: m_A and $\tan \beta$ $M_{h,EFT}^{125}$ and $M_{h,EFT}^{125}(\tilde{\chi})$ scenarios used

$\forall \mathsf{BF} X \to HH$

meiqi.chen@cern.ch

Resolved VBF $X \rightarrow HH$ production

$\forall \mathsf{BF} X \to HH$

meigi.chen@cern.ch

Resolved VBF $X \rightarrow HH$ production [CERN-EP-2019-267]

First search for heavy spin-0 scalar with $1 < m_X < 5$ TeV

 X_{bb} algorithm improves sensitivity by up to 50% in exp. discovery significance for $H \rightarrow b\overline{b}$

Boosted VBF $X \rightarrow HH$ production [CERN-EP-2024-092]

2 large-radius (R = 1.0) jets, identified by a NN-based double *b*-tagging X_{bb} algorithm [<u>ATL-PHYS-PUB-2020-019</u>]

New

×10⁻²

Events / bin

Simulated Signal events

First search for heavy spin-0 scalar with $1 < m_X < 5 \, {\rm TeV}$

X

Boosted VBF $X \rightarrow HH$ production [CERN-EP-2024-092]

2 large-radius (R = 1.0) jets, identified by a NN-based double *b*-tagging X_{bb} algorithm [ATL-PHYS-PUB-2020-019]

New!

 X_{hb} algorithm improves sensitivity by up to 50% in exp. discovery significance for $H \rightarrow b\bar{b}$

A newer version based on Graph Neural Network for future iterations

First search for heavy spin-0 scalar with $1 < m_X < 5$ TeV

No significant excess observed

Loss of sensitivity at high mass due to lower efficiency of the X_{bb} algorithm

Boosted VBF $X \rightarrow HH$ production [CERN-EP-2024-092]

2 large-radius (R = 1.0) jets, identified by a NN-based double *b*-tagging X_{bb} algorithm [<u>ATL-PHYS-PUB-2020-019</u>]

Probing narrow scalar resonances:

- $170 < m_x < 1000 \text{ GeV}$
- $15 < m_s < 500 \text{ GeV}$

Upper limits are placed on

 $\sigma(X \to SH \to b\bar{b}\gamma\gamma) =$

CERN-EP-2024-072]

Model- & mass-dependent

 $\sigma(pp \to X) \times BR(X \to SH) \times BR(S \to b\bar{b}) \times BR(H \to \gamma\gamma)$

instead of on specific models

Main background:

Non-resonant $\gamma\gamma$ +jets

MC (shape) & data-driven (norm.)

meigi.chen@cern.ch

[CERN-EP-2024-147]

 $X \to S(\to VV)H(\to \gamma\gamma)$

/ 2.5 GeV

ATLAS

2^ttiaht

meigi.chen@cern.ch

$X \rightarrow SH \rightarrow HHH \rightarrow 6b$

T

$X \rightarrow SH \rightarrow HHH \rightarrow 6b$

The first ever search of this topology at the LHC!

[CERN-EP-2024-285]

meiqi.chen@cern.ch

$X \to SH \to HHH \to 6b$

The first ever search of this topology at the LHC!

[<u>CERN-EP-2024-285</u>]

Challenging QCD multi-jet background

- Fully data-driven estimation
- Relies on the kinematic extrapolation in $4b \rightarrow 5b \rightarrow 6b$ (SR) regions
- DNN signal/background discriminator designed to minimise dependency on # b-tags (any differences corrected by systematics)

 \mathbf{m}

 \mathbf{m}

 h_i

$X \rightarrow SH \rightarrow HHH \rightarrow 6b$

The first ever search of this topology at the LHC! [CERN-EP-2024-285]

No significant evidence of BSM signals observed

<u>Non-resonant interpretation</u>: constraints placed on the trilinear & quartic Higgs self-coupling modifiers κ_3 , κ_4 (see Bill Balunas' <u>talk</u> on non-resonant HH)

Obs. upper limits on

 $\sigma_{TRSM}(X \rightarrow SH \rightarrow HHH \rightarrow 6b)$

 $\sigma_{Heavy\,resonance}(X \rightarrow SH \rightarrow HHH \rightarrow 6b)$

Diverse searches of resonant HH at ATLAS Run-2 $X \rightarrow HH$ combination Resolved / boosted VBF $HH \rightarrow 4b$ $X \rightarrow S(\rightarrow b\overline{b})H(\rightarrow \gamma\gamma)$ $X \rightarrow S(\rightarrow VV)H(\rightarrow \gamma\gamma)$ $X \rightarrow SH \rightarrow HHH \rightarrow 6b$

Better/first constraints on σ_{prod} & parameters of BSM processes Larger resonance mass range probed Looking forward to improved analysis techniques & tagging algorithms

Run-2 Resonant HH combination

 $b\overline{b}b\overline{b}$:

- Resolved (4 small-R jets) + boosted (2 large-R jets from Higgs with pT > 250 Gev), orthogonal channels
- BDT jet-pairing (resolved)
- 2b, 3b, 4b categories according to # b-tagged track jets in large-R jets (boosted)
- m_{HH} used to define SR, CR, VR, and as the final discriminant $b\overline{b}\tau^+\tau^-$:
- Event categories defined by the decay mode of au lep had, had had
- Lep had two orthogonal regions separated by triggers (lep had / single-lep)
- Had had 2 reconstructed τ_{had} candidates w/ opposite charge & no e/ μ
- 2 small-R b-jets required
- Mass-parametrised neural network in each signal region output scores as final discriminant $b\bar{b}\gamma\gamma$:
- Single- & di-photon triggers
- Requires 2 photons + 2 b-tagged jets, no e/μ
- 2 BDTs signal/background classifiers against: $t\bar{t}\gamma\gamma$, single-Higgs
- Signal region: $m_{\gamma\gamma} \sim m_H$, $m_{bb\gamma\gamma} \sim m_X$
- $m_{\gamma\gamma}$ as the final discriminant

Type-I 2HDM constraints

Sensitive to $cos(\beta - \alpha)$ values not probed by SM Higgs boson coupling measurements

• E.g. $\cos(\beta - \alpha) = -0.1$, $\tan \beta = 10$, 270 < m_H < 810 GeV excluded 2HDM – extends the SM with an additional Higgs doublets After EWSB, leads to:

3 neutral Higgs: h, H (CP-even), and A (CP-odd) 2 charged Higgs: H^{\pm}

Free parameters: $\tan \beta$ (ratio of vev of the 2 Higgs doublets)

 α (mixing angle between CP-even Higgs) m_H (mass of the heavy CP-even Higgs H)

Fixed $cos(\beta - \alpha)$

Nev

Type-I 2HDM constraints

Difficult to probe at high $\tan \beta$

• All SM couplings are suppressed

2HDM — extends the SM with an additional Higgs doublets After EWSB, leads to: 3 neutral Higgs: *h*, *H* (CP-even), and *A* (CP-odd)

S neutral miggs. n, n (CP-even), and A (CP-even)

2 charged Higgs: H^{\pm}

Free parameters: aneta (ratio of vev of the 2 Higgs doublets)

lpha (mixing angle between CP-even Higgs)

 m_H (mass of the heavy CP-even Higgs H)

- BR $(X \rightarrow HH)$ set to 100%
- 2 resonance widths considered narrow (5-6% m_x), broad (20% m_x)
- Large-R jets w/ 250 GeV < pT < 3000 GeV, |η|< 2.0
- 2-pass events: 2 Higgs candidates passing 60% X_{bb} working point
- 1-pass events: used in background estimation
- SR optimised to maximise S/VB
- 2D mass plane smoothly falling distributions
- Background modelling multijet & mis-dentified light-jets
 - Data-driven method + 1 pass events
- Mass-parametrised BDT (truth m_x), trained on loose event selections for stats – output as final discriminant
- Shape systematic difference between 2-pass & 1-pass events

$$\sqrt{\left(\frac{m_{H_1} - 124 \,\text{GeV}}{1500 \,\text{GeV}/m_{H_1}}\right)^2 + \left(\frac{m_{H_2} - 117 \,\text{GeV}}{1900 \,\text{GeV}/m_{H_2}}\right)^2} < 1.6 \,\text{GeV}$$

Events in the VR reside in the region bounded by the SR boundary and

$$\sqrt{\left(\frac{m_{H_1} - 124 \,\text{GeV}}{0.1 \ln(m_{H_1})}\right)^2 + \left(\frac{m_{H_2} - 117 \,\text{GeV}}{0.1 \ln(m_{H_2})}\right)^2} < 100 \,\text{GeV},$$

and events in the CR reside in the region bounded by the VR outer boundary and

$$\sqrt{\left(\frac{m_{H_1} - 124 \,\text{GeV}}{0.1 \ln(m_{H_1})}\right)^2 + \left(\frac{m_{H_2} - 117 \,\text{GeV}}{0.1 \ln(m_{H_2})}\right)^2} < 170 \,\text{GeV}.$$

X_{bb} algorithm

- Signal: jets from $H \rightarrow b\overline{b}$ decay
- Background: jets from multijet production & high pT top quarks
- Discriminant defined as:

 $D_{\text{Xbb}} = \ln \frac{p_{\text{Higgs}}}{f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{top}}) \cdot p_{\text{multijet}}}$

VR jets:

- Various radius dependent on the pT of the jet & ρ/pT (ρ = 30 GeV)
- 0.02 < R < 0.4
- VR jets ghost associated with large-R jets

Most significant improvement in high jet pT region

10.0

GN2X algorithm

- An additional signal class: $H \rightarrow c\bar{c}$
- Discriminant defined as:

$$D_{\text{Hbb}}^{\text{GN2X}} = \ln\left(\frac{p_{\text{Hbb}}}{f_{\text{Hcc}} \cdot p_{\text{Hcc}} + f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{Hcc}} - f_{\text{top}}) \cdot p_{\text{QCD}}}\right)$$

- Utilises transformer network architecture
- Track representation in embedding space learnt by initialiser networks (deepsets architecture)
- Auxiliary tasks that aid the performance

Most significant improvement for multijet in high jet pT region

$X \rightarrow S(\rightarrow b\overline{b})H(\rightarrow \gamma\gamma)$ Background estimation

[CERN-EP-2024-072]

Events / bin Events / bin ATLAS ATLAS 🛉 Data 🛉 Data √s = 13 TeV, 140 fb⁻¹ √s = 13 TeV, 140 fb⁻¹ 10⁷ γγ+jets × 1.26 γγ+jets × 1.26 X→SH→bbγγ X→SH→bbγγ 10⁷ 2 b-tagged SB Single Higgs 2 b-tagged SB Single Higgs Pre-fit (B-only) Ζγγ Pre-fit (B-only) Ζγγ 10 10⁵ tīγγ tīγγ HH HH 10³ 10³ /// γγ+jets unc. /// γγ+jets unc. 10 10 10 10-1 Data / Bkg. Data / Bkg. 1.5 0.5 0 200 °0 0.5 0.6 0.7 0.8 0.9 1 PNN(m_x = 250 GeV, m_s = 100 GeV) 1000 1100 m^{*}_{bbγγ} [GeV] 500 300 400 600 700 800 900 0.1 0.2 0.3 0.4 (a) (b)

2 *b*-tag region

1 b-tag region

 $\rightarrow SH$

$S(\rightarrow bb)H(\rightarrow \gamma\gamma)$:

- Natural width of S assumed to be much smaller than experimental resolution
- $S(\rightarrow bb)$ the most dominant decay for m_s < 130 GeV
- For $m_X >> m_S + m_H$: S becomes boosted, and 2 *b*-quarks are reconstructed within 1 small-R jet
- For small $m_x (m_s + m_H)$: 2 small-R *b-jets*
- pNN output as final discriminant

 $S(\rightarrow VV)H(\rightarrow \gamma\gamma)$:

- Events categorised into 4 regions: 1l (1 lep + ≥2 jets), 2l w/ opp. charge, 2l w/ opp. flavour, 2l w/ same flavor
 - 2 BDTs trained in 1l and 2l regions
 - $m_{\gamma\gamma}$ limited to 105-160 GeV to exclude Z resonance
 - Continuum background: $\gamma\gamma$ +jets, V+ $\gamma\gamma$, $t\bar{t}\gamma\gamma$
- Data-driven background estimation: analytical function from a fit to data $m_{\gamma\gamma}$ in sideband region
 - Sideband looser photon identification isolation

meiqi.chen@cern.ch

TRSM HHH production

Resonant production

• m_s ≥ 2 m_H (250 GeV)

Non-resonant production

- m_s < 2 m_H (250 GeV)
- SM HHH production

Heavy resonance HHH production

 Generic heavy resonances (narrow & wide decay widths)
o m_s > 275 GeV, m_x > 550 GeV

$HHH \rightarrow 6b$ pairing

Resonant TRSM HHH production Softer m_{HHH} spectrum and jets More overlap between jets Larger pairing ambiguity

b-jet b-jet

$HHH \rightarrow 6b$ background

estimation

Unblinded NN scores of 6*b* data – good agreement between *b*-tag regions in low- & high-score

$HHH \rightarrow 6b$ background

estimation

<u>Shape systematics</u>: variations in DNN output decomposed into variations in individual input features

- They are well-covered by the 3 'eigenvariation'
- All below 6b statistical uncertainty
- Impacts background by $\sim 10\%$
- Dominant systematic uncertainty

