Constraints on Higgs-charm couplings (from CMS)

Sebastian Wuchterl (CERN) on behalf of the CMS collaboration

Higgs 2024

6 November 2024

Where do we stand?

- No clear indication of BSM physics \rightarrow where to look at?
 - Higgs boson as discovery tool!
- 10+ years after the Higgs discovery:
 - In depth-characterisation of the Higgs boson
 - Couplings to third generation and bosons established (O(10%))
 - Evidence for coupling to muons
 - → Constrain the coupling to charm quarks!

Кı

κ_W

κ_Z

κ_b

 K_{τ}

К,

κ_{Zγ}

κ_α

 $B_{\mathsf{Inv},\mathsf{r}}$

B_{Undet}►

Where do we stand?

- No clear indication of BSM physics \rightarrow where to look at?
 - Higgs boson as discovery tool!
- 10+ years after the Higgs discovery:
 - In depth-characterisation of the Higgs boson
 - Couplings to third generation and bosons established (O(10%))
 - Evidence for coupling to muons
 - \rightarrow Constrain the coupling to charm quarks!
- Quark sector fundamentally harder than lepton sector
- We have to explore multiple avenues:

Indirect

Model dependence?

Direct

Where do we stand?

- No clear indication of BSM physics \rightarrow where to look at?
 - Higgs boson as discovery tool!
- 10+ years after the Higgs discovery:
 - In depth-characterisation of the Higgs boson
 - Couplings to third generation and bosons established (O(10%))
 - Evidence for coupling to muons
 - \rightarrow Constrain the coupling to charm quarks!
- Quark sector fundamentally harder than lepton sector
- We have to explore multiple avenues:

Indirect	Direct	
Higgs kinematics	H → cc:	F
and inclusive	VH and ggH	E
measurements	& H+c	C

- decays to
- meson+boson

See also Anusree Vijay's <u>talk</u> yesterday

Indirect probes of y_c - differential Higgs p_T

- combination CMS measurements:
 - $\gamma\gamma$, ZZ(\rightarrow 4l), W/W(\rightarrow eµvv), $\tau\tau$
- Extrapolated to full phase space

06.11.24 | Sebastian Wuchterl

- combination CMS measurements:
 - $\gamma\gamma$, ZZ(\rightarrow 4l), W/W(\rightarrow eµvv), $\tau\tau$
- Extrapolated to full phase space

06.11.24 | Sebastian Wuchterl

Indirect probes of $y_c - H \rightarrow 4l + bb$

- Search for H γ production w/ focus on boosted topology
- Simultaneous analysis of $H \rightarrow bb$ and $H \rightarrow 4l$ final states

Indirect probes of $y_c - H \rightarrow 4l$

- Restructure the analysis:
 - Inclusive $H \rightarrow 4l$ cross-section analysis
 - Merging (un-) tagged categories
 - Parametrize inclusive H signal:

$$\Gamma_{\rm H} = R_{gg}(\kappa_{\rm u,d,s,c,b}) \cdot \Gamma_{\rm H \to gg}^{\rm SM} + \sum_{q={\rm u,d,s,c,b}} \kappa_q^2 \cdot \Gamma_{\rm H \to q\overline{q}}^{\rm SM} + \sum_{\rm VV'} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^2 \cdot \Gamma_{\rm H \to VV'}^2 + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^{\rm SM} + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot \Gamma_{\rm H \to VV'}^2 \cdot \Gamma_{\rm H \to VV'}^2 + \sum_{\ell} \kappa_{\rm VV'}^2 \cdot$$

$$\sigma_{\mathrm{H}\to4\ell} = \frac{\Gamma_{\mathrm{H}\to4\ell}^{\mathrm{SM}} \cdot \kappa_{\mathrm{ZZ}}^2}{\Gamma_{\mathrm{H}}(\kappa_{\mathrm{u},\mathrm{d},\mathrm{s},\mathrm{c},\mathrm{b}})} \left(R_{\mathrm{gg}}(\kappa_{\mathrm{u},\mathrm{d},\mathrm{s},\mathrm{c},\mathrm{b}}) \cdot \sigma_{\mathrm{ggH}}^{\mathrm{SM}} + \sum_{\mathrm{q}} \kappa_{\mathrm{q}}^2 \cdot \sigma_{\mathrm{q}\overline{\mathrm{q}}\mathrm{H}}^{\mathrm{SM}} + \sigma_{\mathrm{t}\overline{\mathrm{H}}}^{\mathrm{SM}} + \sum_{\mathrm{VV}} \kappa_{\mathrm{VV}}^2 \kappa_{\mathrm{VV}}^2 \right)$$

- Fix $\kappa_b = \kappa_t = 1$ due to constraints from other measurements
- Constrained fit: $\Gamma_H^{BSM} = 0$, $\kappa_{ZZ^2} = 1$, $\kappa_{q'} = 1$
- Unconstrained fit: $\Gamma_{H}^{BSM} \ge 0$, $\kappa_{ZZ}^2 \le 1$, $\kappa_{q'}$ = free

[<u>CMS-HIG-PAS-23-011</u>]

Parameter	Scenario	Obse	rved	Expe	ected
K.,	float all	$(0.0 \pm 1.5) \times 10^3$	$[-2.4, 2.4] \times 10^3$	$(0.0 \pm 1.8) \times 10^3$	[-2.6
$\kappa_{\rm u}$	fix others	$(0.0 \pm 1.4) \times 10^3$	$[-2.3, 2.3] \times 10^3$	$(0.0 \pm 1.6) \times 10^3$ $(0.0 \pm 1.6) \times 10^3$	[-2.5]
κ _d	float all	$(0.0 \pm 7.1) \times 10^{2}$	$[-1.0, 1.0] \times 10^3$	$(0.0 \pm 7.4) \times 10^{2}$	[-1.0
κ _d	fix others	$(1.5^{+5.0}_{-8.0}) \times 10^2$	$[-9.7, 9.7] \times 10^2$	$(0.0 \pm 6.5) \times 10^2$	[-9.7
κ _s	float all	0^{+33}_{-34}	[-46, 44]	1^{+32}_{-31}	[-44]
$\kappa_{\rm s}$	fix others	11_{-42}^{+19}	[-44, 42]	1^{+26}_{-30}	[-41]
κ _c	float all	$0.0_{-3.0}^{+2.7}$	[-4.0, 3.4]	$1.0^{+1.4}_{-3.8}$	[-3.8
κ _c	fix others	$1.4^{+1.2}_{-4.4}$	[-4.0, 3.5]	$1.0^{+1.3}_{-3.8}$	[-3.8
$\Gamma_{\mathrm{H}}^{\mathrm{BSM}}\left(\mathrm{MeV} ight)$	float all	$0.0\substack{+0.9 \\ -0.0}$	< 1.6	$0.0^{+0.7}_{-0.0}$	< 1.4
$\Gamma_{\rm H}^{\rm BSM} ({ m MeV})$	float all	$0.0^{+0.9}_{-0.0}$	< 1.6	$0.0^{+0.7}_{-0.0}$	< 1.4

Kb fixed

Rare decays - Z/H \rightarrow J/ Ψ + γ

Higgs decay via c-quark loops to photon + charmonia

- Exploit excellent muon reconstruction of CMS
 - Dimuon + photon final state
- Z boson equivalent ~100 more frequent
- Branching fractions < 10⁻⁶

Process	${\mathcal B}$
$H \rightarrow \Psi(1S)\gamma$	$3.01^{+0.15}_{-0.15} imes 10^{-6}$
$ m Z ightarrow \Psi(1S) \gamma$	$8.96^{+1.51}_{-1.38} imes 10^{-8}$
${ m H} ightarrow \Psi(2{ m S})\gamma$	$1.03^{+0.06}_{-0.06} imes 10^{-6}$
$ m Z ightarrow \Psi(2S) \gamma$	$4.83^{+1.02}_{-0.91} imes10^{-8}$
$\Psi(1S) ightarrow \mu^+ \mu^-$	$5.961^{+0.033}_{-0.033} imes 10^{-2}$
$\Psi(2S) ightarrow \mu^+ \mu^-$	$8.0^{+0.6}_{-0.6} imes 10^{-3}$

- More than factor 2 improvement wrt. 2016 search

9/15

"The golden channel": $VH(\rightarrow cc)$

- Direct measurements require (ideally):
- Sharp mass peak
- Suppressed and well understood background
- Learn from history of VH(bb) measurements

- OL, 1L, and 2L categories $(Z \rightarrow vv, W \rightarrow lv, Z \rightarrow ll)$

- If we assume all other couplings to have SM values:
 - **Strongest direct constraints to date**

H+c associated production

Clear advantage: Use any Higgs decay, ideally with low background

- However: signal-sensitive cross section ~90 fb
- Use the high-purity final state with two photons
- Also here: charm-tagging is a crucial ingredient

Motivation from [arXiv:1507.02916]

H+c associated production

Diphoton event selection + charm-tagged additional jet Employ two BDTs to separate ggH (BDT 1) and continuous backgrounds (BDT 2)

- 2D category optimisation \rightarrow 9 orthogonal regions (per year)
- Parametric model for resonant backgrounds and signal

	All cla	All classes				
	Accuracy	AUC	$\text{Rej}_{50\%}$	R		
PFN	0.772	0.9714	2924			

06.11.24 | Sebastian Wuchterl

Our most important tool: jet flavor tagging

We have made significant progress in resolved and boosted tagging

Where does this scaling law of taggers lead us?

- So far, Run 2 analyses have been performed using DeepCSV/DeepJet
- We expect a **factor of 2** improvement for c-jets
- Plus the progress we are making on calibration
- Run 2+Run 3 data (factor 3 larger!)

Back-of-the-envelope estimate

- Assuming factor 3 in luminosity and 2 in c-tagging eff. with same background:
 - VH(cc) resolved: \rightarrow upper limit of ~8 for μ
 - H+c (yy): \rightarrow upper limit of ~144 for μ
- But backgrounds are also real charm...
- At HL-LHC (3000fb-1):
 - VH(cc): Extrapolation gives ~ μ < 1.6
 - H+c cross section of ~170fb
 - \rightarrow 2300 signal events in the $\gamma\gamma$ channel!
 - Higgs discovery 180/750
 - Benefits from soft charm tagging improvements

Conclusion

- The hunt for y_c is an exciting and active field
 - Impressive progress in the last years
 - Hand-in-hand with technological improvements and flavour-tagging
- Exploring complementary ways:
- New indirect probes: Combination of differential measurements
- Rare decays: $H \rightarrow J/Psi + photon$
- New avenues: H+c associated production
- Charming journey ahead:
- Combination of CMS (and ATLAS) current results
- Addition of additional candidates?
 - ttH(cc), VBF, H+c (\rightarrow ZZ, WW, $\tau\tau$)
 - Hadronic channels (data parking & scouting)

15/15

Thank you very much for your attention!

Indirect probes of y_c - differential Higgs p_T

p_T^H [GeV]	Best fit (fb)
σ_{0-5}	$2.86^{+0.49}_{-0.58}(\text{syst.})^{+1.75}_{-1.95}(\text{stat.}) \times 10^2$
σ_{5-10}	$8.73^{+0.89}_{-0.54}(\text{syst.})^{+2.90}_{-3.13}(\text{stat.}) \times 10^2$
σ_{10-15}	$1.28^{+0.08}_{-0.08}(\text{syst.})^{+0.26}_{-0.25}(\text{stat.}) \times 10^{3}$
σ_{15-20}	$1.12^{+0.06}_{-0.08}(\text{syst.})^{+0.26}_{-0.24}(\text{stat.}) \times 10^3$
σ_{20-25}	$4.16^{+0.56}_{-0.00}(\text{syst.})^{+2.14}_{-2.19}(\text{stat.}) \times 10^2$
σ_{25-30}	$8.13^{+0.25}_{-0.43}(\text{syst.})^{+2.14}_{-2.11}(\text{stat.}) \times 10^2$
σ_{30-35}	$5.14^{+0.52}_{-0.32}(\text{syst.})^{+1.74}_{-1.68}(\text{stat.}) \times 10^2$
σ_{35-45}	$5.85^{+0.23}_{-0.24}(\text{syst.})^{+1.28}_{-1.29}(\text{stat.}) \times 10^2$
σ_{45-60}	$2.71^{+0.26}_{-0.16}(\text{syst.})^{+0.62}_{-0.59}(\text{stat.}) \times 10^2$
σ_{60-80}	$2.88^{+0.17}_{-0.13}(\text{syst.})^{+0.46}_{-0.45}(\text{stat.}) \times 10^2$
σ_{80-100}	$2.37^{+0.18}_{-0.14}(\text{syst.})^{+0.36}_{-0.35}(\text{stat.}) \times 10^2$
$\sigma_{100-120}$	$6.16^{+0.00}_{-0.83}(\text{syst.})^{+2.97}_{-2.65}(\text{stat.}) \times 10^{1}$
$\sigma_{120-140}$	9.07 ^{+0.86} _{-0.66} (syst.) ^{+1.73} _{-1.70} (stat.) × 10 ¹
$\sigma_{140-170}$	$5.31^{+0.50}_{-0.37}(\text{syst.})^{+1.08}_{-1.06}(\text{stat.}) \times 10^{1}$
$\sigma_{170-200}$	$1.39^{+0.22}_{-0.15}(\text{syst.})^{+0.65}_{-0.63}(\text{stat.}) \times 10^{1}$
$\sigma_{200-250}$	$1.47^{+0.22}_{-0.18}(\text{syst.})^{+0.25}_{-0.24}(\text{stat.}) \times 10^{1}$
$\sigma_{250-350}$	$4.28^{+0.59}_{-0.43}(\text{syst.})^{+1.00}_{-0.97}(\text{stat.}) \times 10^{0}$
$\sigma_{350-450}$	$9.67^{+2.09}_{-1.49}(\text{syst.})^{+3.27}_{-3.08}(\text{stat.}) \times 10^{-1}$
$\sigma_{>450}$	$4.37^{+1.19}_{-0.80}(\text{syst.})^{+1.77}_{-1.66}(\text{stat.}) \times 10^{-1}$

Channel $p_{\rm T}^{\rm H}$ bin bot

		•		•	
	${ m H} ightarrow \gamma \gamma$	$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$	$\mathrm{H} ightarrow \mathrm{W}^+ \mathrm{W}^{-(*)} ightarrow \mathrm{e}^{\pm} \mu^{\mp} \nu_{\mathrm{l}} \overline{\nu}_{\mathrm{l}}$	${ m H} ightarrow au^+ au^-$	$H ightarrow au^+ au^-$
	0 - 5	0 - 10			
	5 - 10				
	10 - 15	10 - 20	0 - 30		
	15 - 20	10 _0		0 - 45	
	20 - 25	20 - 30			
	25 - 30	20 00			
	30 - 35	30 - 45	30 - 45		
	35 - 45		50 - 45		
	45 - 60	45-60	45 - 80	45 - 80	
undarias (CoV)	60 - 80	60 - 80	H O = 00		
	80 - 100	80 - 120	80 - 120	80 - 120	
	100 - 120	00 - 120	00 - 120	00 - 120	
undaries (Gev)	120 - 140			120 - 140	
	140 - 170	120 - 200	120 - 200	140 - 170	
-	170 - 200			170 - 200	
	200 - 250			200 350	
	250 - 350			200 - 330	
	350 - 450	200 - ∞	200 - ∞	350 - 450	1
	$450 - \infty$		Y	$450 - \infty$	450 - 6
	430 - ∞		1	450-00	600 -

Indirect probes of $y_c - H \rightarrow 4l + bb$

- Search for H γ production w/ focus on boosted topology
- Simultaneous analysis of $H \rightarrow bb$ and $H \rightarrow 4l$ final states

Dedicated photon (un-)tagged categorie $w/p_T^{\gamma} > 150 \text{ GeV}$

Indirect probes of $y_c - H \rightarrow 4l + bb$

06.11.24 | Sebastian Wuchterl

[<u>CMS-HIG-PAS-23-011</u>]

Rare decays - Z/H \rightarrow J/ Ψ + γ

	Deale	aun da	Cia	nala
Collingo		$\frac{1}{7}$	$\overline{7} \times \Psi(\mathbf{n} \mathbf{C})$	$\frac{\text{mais}}{\mathbf{U} \times \mathbf{W}(\mathbf{n}\mathbf{C})}$
Jource Integrated luminosity	QUD	$L \rightarrow \mu \mu \gamma$	$\frac{L \rightarrow I(IIS)\gamma}{1.607}$	$\frac{\Pi \rightarrow I(\Pi 5)\gamma}{1.60/}$
Integrated luminosity	— Energy data	Errore CD	1.0%	1.0%
Normalization uncertainties	From data	From CK		
QCD scale			3.5%	5.6%
PDF			1.7%	3.2%
Detector simulation, reconstruction				
Pileup weight			0.9%	0.8%
Trigger efficiency			3.5%	3.5%
Trigger timing shift			0.6%	2.7%
Muon identification/isolation			2.0%	1.4%
Photon identification			1.5%	1.5%
Pixel seed veto			1.0%	1.0%
Jet energy scale (VBF category)				2.9%
Jet energy resolution (VBF category)				1.0%
Jet b tagging (HF category)				5.4%
Background model	Discrete			
Signal model		1%	1%	1%
$m_{\mu\mu\gamma}$ mean (MC stat)		0.06%	0.06%	0.06%
$m_{\mu\nu\rho}$ width (MC stat)		0.1%	0.1%	0.1%
$m_{\mu\mu\gamma}$ mean (<i>u</i> calibration)		0.05%	0.05%	0.05%
$m_{\mu\mu\gamma}$ width (μ calibration)		0.8%	0.8%	0.8%
$m_{\mu\mu\gamma}$ mean (γ energy)		0.04%	0.07%	0.04%
$m_{\mu\mu\gamma}$ mean (γ energy)		0.0470	2 40/	0.04/0
$m_{\mu\mu\gamma}$ width (γ energy)		3.4 ⁷ 0	3.4 %	3.4 %
$m_{\mu\mu\gamma}$ whath (γ resolution)		1.8%	1.8%	1.8%

Rare decays - Z/H→J/ Ψ + γ

Process		This analysis (123 fb	$^{-1})$
1100055	$\mu_{obs}(\mu_{exp})$	$\sigma_{obs}(\sigma_{exp})[pb]$	
$Z ightarrow \Psi(1S)\gamma$	7.2 $\left(8.6^{+4.1}_{-2.7}\right)$	$3.8 \left(4.4^{+1.9}_{-1.3}\right) imes 10^{-2}$	0
$Z ightarrow \Psi(2S)\gamma$	29 (68^{+36}_{-22})	$8~(19^{+8}_{-6}) imes 10^{-2}$	1.
${ m H} ightarrow \Psi(1{ m S})\gamma$	88 (62^{+30}_{-19})	$1.4~(1.0^{+0.5}_{-0.3}) imes 10^{-2}$	2
${ m H} ightarrow \Psi(2{ m S})\gamma$	970 $\left(781^{+417}_{-259}\right)$	$5.5~(4.4^{+2.3}_{-1.5}) imes 10^{-2}$	9.

VH(cc)

VH(cc)

Uncertainty source	$\Delta \mu / (\Delta \mu)_{\rm tot}$
Statistical	88%
Background normalizations	39%
Experimental	40%
Sizes of the simulated samples	24%
Charm identification efficiencies	26%
Jet energy scale and resolution	15%
Simulation modeling	1%
Luminosity	5%
Lepton identification efficiencies	2%
Theory	25%
Backgrounds	21%
Signal	14%

Uncertainty source	$\Delta \mu / (\Delta \mu)_{\rm tot}$
Statistical	66%
Background normalizations	28%
Experimental	72%
Sizes of the simulated samples	59%
Charm identification efficiencies	27%
Jet energy scale and resolution	17%
Simulation modeling	20%
Luminosity	13%
Lepton identification efficiencies	10%
Theory	22%
Backgrounds	21%
Signal	7%

Resolved

VH(cc)

	Signal		Resonant bkg.					Continuous bkg.	S/B
	cH	ggH	ttH	VBF	VH	bH	Total	(×10 ³)	$(\times 10^{-5})$
Category 0	0.0128	83.8%	< 0.1%	5.3%	3.4%	7.5%	2.43	0.50	2.55
Category 1	0.0158	78.7%	0.3%	7.3%	6.3%	7.3%	3.31	1.53	1.03
Category 2	0.0072	72.2%	4.0%	8.3%	9.1%	6.4%	1.77	7.43	0.10
Category 3	0.0034	72.3%	0.1%	16.2%	5.9%	5.6%	1.29	0.17	2.03
Category 4	0.0087	68.0%	1.2%	16.0%	9.9%	4.9%	3.52	0.96	0.90
Category 5	0.0094	53.7%	14.5%	14.7%	13.5%	3.6%	5.11	9.87	0.10
Category 6	0.00029	42.0%	1.9%	42.5%	12.2%	1.5%	0.52	0.02	1.47
Category 7	0.00095	43.1%	13.8%	25.1%	16.8%	1.3%	1.83	0.16	0.59
Category 8	0.00165	35.7%	31.5%	15.0%	16.7%	1.1%	3.32	1.89	0.09
All categories	0.060	61.4%	9.4%	13.9%	10.8%	4.5%	23.1	22.5	0.27

Theoretical uncertainties on cH signal Theoretical uncertainties on resonant backgrou Experimental uncertainties on yields Experimental uncertainties on mass shapes Luminosity uncertainties

	38%
und	59%
	27%
	negligible
	negligible

jet flavor tagging

For b vs light: Mistagging one b in 100000 light jets!

~exp(time)

~time

Prospects for the (near) future

- Back-of-the-envelope estimate
 - Assuming factor 3 in luminosity and 2 in c-tagging efficiency with same background rate
 - VH(cc) resolved: \rightarrow upper limit of ~8 for μ
 - H+c (yy): \rightarrow upper limit of ~144 for μ
 - But backgrounds are also real charm...
- At HL-LHC (3000fb-1):
 - VH(cc): Extrapolation gives $\sim \mu < 1.6$
 - H+c cross section of ~170fb
 - \rightarrow 2300 signal events in the $\gamma\gamma$ channel!
 - Higgs discovery 180/750
 - Benefits from soft charm tagging improvements

From $\mathcal{O}(1000)$ to $\mathcal{O}(100)$ to $\mathcal{O}(10)$ in ~5 years. A combined effort and creativity from instrumentation, physics objects and analysis techniques!

27/15