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What, why, and where to look
The Higgs field is responsible for the spontaneous 
breaking of the Electro-Weak symmetry

only parameter  
regulating field’s shape

1.1. The Standard Model of particle physics 13
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To satisfy space isotropy and homogeneity, it must be a scalar and its vacuum expectation
value (v.e.v. or v) a constant. Moreover, since the introduction of the BEH doublet must break
the original local SU(2)L ⌦ U(1)

Y
symmetry while preserving the U(1)EM one, it must have

weak hypercharge Y = 0. All of these requirements result in a scalar omni-pervasive field of
electromagnetic charge Q = 0, whose quantum excitations manifest themselves as Higgs bosons
(H). The Lagrangian that introduces this field in the SM is:
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where the covariant derivative is that introduced in Equation 1.22 and the potential V (�
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can be explicitely written as:
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where both µ
2 and � are strictly positive. The functional form of such potential is depicted

in Figure 1.3, where the typical so-called Mexican hat shape can be appreciated. The potential
presents an unstable local maximum for � = 0 and a continuum of stable ground states satisfying:
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Figure 1.3: Schematic illustration of spontaneous symmetry breaking via the BEH mechanism.
The represented surface has the functional form of the Higgs potential (mexican hat), while the
red ball illustrates the process of passing from an unstable local maximum to the continuum of
ground states where v is referred to as vacuum expectation value.

The choice of ground state among the continuum defined above is what spontaneously breaks
the local SU(2)L⌦U(1)

Y
symmetry while preserving the U(1)EM symmetry as it is parallel to the

�
0 component of the doublet. Therefore, the small perturbations expansion around the minimum

can be written as:
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Figure 1.3: Schematic illustration of spontaneous symmetry breaking via the BEH mechanism.
The represented surface has the functional form of the Higgs potential (mexican hat), while the
red ball illustrates the process of passing from an unstable local maximum to the continuum of
ground states where v is referred to as vacuum expectation value.

The choice of ground state among the continuum defined above is what spontaneously breaks
the local SU(2)L⌦U(1)
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symmetry while preserving the U(1)EM symmetry as it is parallel to the
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1.  is not a free parameter 
 closure test of the SM

λHHH
→

2.  regulates field shape 
 test of EWSB and vacuum stability

λHHH
→

3.  deviations from SM compatible  
with first-order EWSB transition 

 test Electro-Weak baryogengesis

λHHH

→

predicted by the SM once 
mH and v are measured

only parameter  
regulating field’s shape + predicted by the SM once 

mH and v are measured

Just heard about it in Tom’s talk

https://indico.cern.ch/event/1391236/timetable/#34-vacuum-stability-in-the-sta
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kl ⇡ 2.5, with strong effects on the shape for kl values between 0 and 7. In the SM, the mHH
distribution is wide with a broad peak at mHH ⇡ 400 GeV. These effects are illustrated in
Figure 4b.
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Figure 3. Total HH production cross section as function of kl [27] .
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Figure 4. Distributions of the box, interference, and triangle components that contribute to the SM
signal (a). Since these have, respectively, no, linear, and quadratic dependence on kl, the mHH shapes
largely differ for various coupling hypotheses (b).

Experimental analyses use both the total cross section and the differential distributions
in mHH to constrain the value of the self-coupling. At the current sensitivity, the capability
to constrain the self-coupling largely stems from the enhanced HH cross section. However,
the differential mHH information is important to develop analyses that are optimal over a
broad range of kl values, and to solve the degeneracy between kl values that result in the
same total cross section values.

1.3.2. ggF Production in EFTs
In the previous section, we implicitly assumed that BSM physics might manifest solely

through the modification of the Higgs boson self-coupling, and that the interpretations of
experimental searches in terms of constraints on kl assume that all the other couplings
are fixed to the SM predictions. While this is a valid operative assumption if we want
to determine how precisely we can measure the Higgs boson self-coupling given the
available data, a more generic study of BSM physics effects requires the framework of EFTs
introduced in Section 1.2.
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DESTRUCTIVE INTERFERENCE

The search for non-resonant Higgs boson pair production is the only direct method to probe  and:λHHH

σVBF = 1.739 fbσggF = 31.05 fb

Test model-independent non-resonant 
EFT benchmarks

DESTRUCTIVE INTERFERENCE

Study spontaneous electro-weak 
symmetry breaking
Set limits on main production mechanisms’ 
cross section: ggF and VBF

Test deviation from the SM couplings with       
-framework:  ,  ,  ,   (  )κ κλ κt κV κ2V κX = cX /cSM

X

What, why, and where to look RESONANT HH PRODUCTION 
Check out Davide’s talk later

https://indico.cern.ch/event/1391236/timetable/#79-resonant-hhsh-searches-at-c
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What, why, and where to look
Direct Di-Higgs searches



Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH) 5

Ideally we would like to investigate all the possible decay 
modes of HH but given the current luminosity and the harsh 
experimental conditions, to achieve good sensitivity, we need:

What, why, and where to look
Direct Di-Higgs searches



Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH) 5

1. Either large branching ratio

Ideally we would like to investigate all the possible decay 
modes of HH but given the current luminosity and the harsh 
experimental conditions, to achieve good sensitivity, we need:

What, why, and where to look
Direct Di-Higgs searches



Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH) 5

1. Either large branching ratio

2. Or very good selection purity

Ideally we would like to investigate all the possible decay 
modes of HH but given the current luminosity and the harsh 
experimental conditions, to achieve good sensitivity, we need:

What, why, and where to look
Direct Di-Higgs searches



Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH) 5

1. Either large branching ratio

2. Or very good selection purity

3. Having both would be the best option

Ideally we would like to investigate all the possible decay 
modes of HH but given the current luminosity and the harsh 
experimental conditions, to achieve good sensitivity, we need:

What, why, and where to look
Direct Di-Higgs searches



Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH) 5

1. Either large branching ratio

2. Or very good selection purity

3. Having both would be the best option

Ideally we would like to investigate all the possible decay 
modes of HH but given the current luminosity and the harsh 
experimental conditions, to achieve good sensitivity, we need:

BUT 

Thanks to ever-improving reconstruction techniques and 
identification methods we are gradually escaping 
these two constraints!

What, why, and where to look
Direct Di-Higgs searches
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HH  bbbb     Non-resonant, resolved topology Phys. Rev. Lett. 129.081802 

     Non-resonant, boosted topology Phys. Rev. Lett. 131.041803

     Non-resonant,  VHH production CMS-PAS-HIG-22-006

     Resonant X YH Phys. Lett. B 842.137392


HH  bb       Non-resonant Phys. Lett. B 842.137531


                Resonant X YH JHEP 11 (2021) 057


HH  bb       Non-resonant JHEP 03 (2021) 257


                Resonant X YH CMS-PAS-HIG-21-011


HH  bbZZ     Non-resonant JHEP 06 (2023) 130


                Resonant Phys. Rev. D. 102.032003

HH  bbWW   Non-resonant + Resonant JHEP 07 (2024) 293 

                          Resonant  JHEP 05 (2022) 005 
HH  bbVV     Non-resonant, fully hadronic boosted topology CMS-PAS-HIG-23-012 

HH  WW    Non-resonant CMS-PAS-HIG-21-014


HH        Non-resonant + Resonant CMS-PAS-HIG-22-012


HH  WWWW + WW  +    Non-resonant + Resonant JHEP 07 (2023) 095


HH combination        Non-resonant + Interpretations CMS-PAS-HIG-20-011 
H+HH combination   Non-resonant + Indirect H effects CMS-PAS-HIG-23-006
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Direct Di-Higgs searches

Complementary searches to constrain BSM models:


H aa  [JHEP07 (2023) 148] [Phys. Rev. Lett. 131. 101801]


H aa bb  + bb  [CMS-PAS-HIG-21-021] [CMS-PAS-HIG-22-007]


→ →γγγγ

→ → ττ μμ

What, why, and where to look

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.041803
https://cds.cern.ch/record/2853338?ln=en
https://www.sciencedirect.com/science/article/pii/S0370269322005263?via=ihub
https://www.sciencedirect.com/science/article/pii/S0370269322006657?via=ihub
https://link.springer.com/article/10.1007/JHEP11(2021)057
https://link.springer.com/article/10.1007/JHEP03(2021)257
https://cds.cern.ch/record/2815230?ln=en
https://link.springer.com/article/10.1007/JHEP06(2023)130
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.032003
https://link.springer.com/article/10.1007/JHEP07(2024)293
https://link.springer.com/article/10.1007/JHEP05(2022)005
https://cds.cern.ch/record/2904879?ln=en
https://cds.cern.ch/record/2840773?ln=en
https://cds.cern.ch/record/2893031
https://link.springer.com/article/10.1007/JHEP07(2023)095
http://dummy
https://cds.cern.ch/record/2904902
https://link.springer.com/article/10.1007/JHEP07(2023)148
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.101801
https://cds.cern.ch/record/2839924?ln=en
https://cds.cern.ch/record/2853298?ln=en
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• Largest Br = 34% 

• ID with deep NN [ref.] 

• Large QCD bkg


• Simultaneous fit of distributions : 
BDT for ggF and  for VBF


• 95% CL upper limit on 



• 95% CL upper limit on 



•  @ 95% CL
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The three* historic channels
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Figure 2: Observed and expected 95% CL upper limits on the sggF+VBF HH cross section as a
function of kl (left), and on the sVBF HH cross section as a function of k2V (right). The green
(yellow) band indicates the regions containing 68% (95%) of the limit values expected under
the background-only hypothesis. The red lines denote the theoretical cross section expectation
assuming that other couplings are set to the SM prediction. For the cross section limit as a
function of k2V, the ggF HH production is assumed to correspond to the SM prediction.

SM expectation, to be in the range �0.1 < k2V < 2.2 (�0.4 < k2V < 2.5). These are the most
stringent observed constraints to date on the HH production cross sections and on the k2V
coupling.
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SM expectation, to be in the range �0.1 < k2V < 2.2 (�0.4 < k2V < 2.5). These are the most
stringent observed constraints to date on the HH production cross sections and on the k2V
coupling.
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Figure 2: Observed and expected 95% CL upper limits on the sggF+VBF HH cross section as a
function of kl (left), and on the sVBF HH cross section as a function of k2V (right). The green
(yellow) band indicates the regions containing 68% (95%) of the limit values expected under
the background-only hypothesis. The red lines denote the theoretical cross section expectation
assuming that other couplings are set to the SM prediction. For the cross section limit as a
function of k2V, the ggF HH production is assumed to correspond to the SM prediction.

SM expectation, to be in the range �0.1 < k2V < 2.2 (�0.4 < k2V < 2.5). These are the most
stringent observed constraints to date on the HH production cross sections and on the k2V
coupling.
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Figure 9: (left) Two-dimensional exclusion regions as a function of the kl and kt couplings
for the full 2016–2018 combination, with both k2V and kV are fixed to unity. (right) Two-
dimensional exclusion regions as a function of k2V and kV, with both kl and kt are set to unity.
Expected uncertainties on exclusion boundaries are inferred from uncertainty bands of the limit
calculation, and are denoted by dark and light-grey areas. The blue area marks parameter com-
binations that are observed to be excluded. For visual guidance, theoretical cross section values
are illustrated by thin, labeled contour lines with the SM prediction denoted by a red diamond.

developed especially for this search: among others, several neural networks to identify the b
jets from the H decay, to categorize the events, and to perform signal extraction. Moreover, this
analysis builds up on the improvements made by the CMS Collaboration in the jet and tau lep-
ton identification and reconstruction algorithms. All these techniques enable the achievement
of particularly stringent results on the HH production cross sections.

The observed (expected) 95% CL upper limit on HH total production cross section corresponds
to 3.3 (5.2) times the theoretical SM prediction. The observed (expected) 95% CL upper limit for
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• ID with deep NN [ref.] 
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• Simultaneous fit of distributions : 
BDT for ggF and  for VBF
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Figure 2: Observed and expected 95% CL upper limits on the sggF+VBF HH cross section as a
function of kl (left), and on the sVBF HH cross section as a function of k2V (right). The green
(yellow) band indicates the regions containing 68% (95%) of the limit values expected under
the background-only hypothesis. The red lines denote the theoretical cross section expectation
assuming that other couplings are set to the SM prediction. For the cross section limit as a
function of k2V, the ggF HH production is assumed to correspond to the SM prediction.

SM expectation, to be in the range �0.1 < k2V < 2.2 (�0.4 < k2V < 2.5). These are the most
stringent observed constraints to date on the HH production cross sections and on the k2V
coupling.
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Expected uncertainties on exclusion boundaries are inferred from uncertainty bands of the limit
calculation, and are denoted by dark and light-grey areas. The blue area marks parameter com-
binations that are observed to be excluded. For visual guidance, theoretical cross section values
are illustrated by thin, labeled contour lines with the SM prediction denoted by a red diamond.

developed especially for this search: among others, several neural networks to identify the b
jets from the H decay, to categorize the events, and to perform signal extraction. Moreover, this
analysis builds up on the improvements made by the CMS Collaboration in the jet and tau lep-
ton identification and reconstruction algorithms. All these techniques enable the achievement
of particularly stringent results on the HH production cross sections.

The observed (expected) 95% CL upper limit on HH total production cross section corresponds
to 3.3 (5.2) times the theoretical SM prediction. The observed (expected) 95% CL upper limit for
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The new-comers
HH  bbVV (fully hadronic)→

CMS-PAS-HIG-23-012
• Large Br = 28% (bbWW+bbZZ) 

• Jets ID with GraphNN-based jet flavour identification [ref.] 

• Large QCD background rejected with dedicated BDT


• Simultaneous fit of  in several BDT-based categories


• 95% CL upper limit on  


•  @ 95% CL

mbb

σVBF /σSM
VBF = 142 (69)

κ2V ∈ [−0.04, + 2.05] ([0.05,1.98])
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The new-comers
HH   → γγττHH  bbVV (fully hadronic)→

CMS-PAS-HIG-23-012 CMS-PAS-HIG-22-012
• Large Br = 28% (bbWW+bbZZ) 

• Jets ID with GraphNN-based jet flavour identification [ref.] 

• Large QCD background rejected with dedicated BDT


• Simultaneous fit of  in several BDT-based categories


• 95% CL upper limit on  


•  @ 95% CL

mbb

σVBF /σSM
VBF = 142 (69)

κ2V ∈ [−0.04, + 2.05] ([0.05,1.98])

• Tiny Br = 0.03%  

• Very good  resolution and  ID with deep NN [ref.] 

• Large photon continuum bkg rejected with dedicated BDT


• Simultaneous fit of  in several BDT-based categories


• 95% CL upper limit on 


•  @ 95% CL

mγγ τh

mγγ

σHH /σSM
HH = 33 (26)

κλ ∈ [−13, + 18] ([−11,16])
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Inclusive production
The HH combination
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VBF production
The HH combination
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• 2D likelihood scans allows to study the mutual interplay between the -modifiers 
(couplings not being profiled are set to the SM expectation value)


• Marginal degeneracy in -dependence due to degeneracies  and 


• No significant deviation from the SM is observed in any of the scans

κ

κ σHH,GGF σHH,VBF

2D likelihood scans
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The HH combination

8− 6− 4− 2− 0 2 4 6 8 10 12
λκ

0.0

0.5

1.0

1.5

2.0

2.5

3.02Vκ

 (13 TeV)-1138 fb
Observed             )       σ68.3% CL (1
Expected             )      σ95.4% CL (2
Best fit                )σ99.99994% CL (5

CMS Preliminary

 = 1Vκ = tκ

6− 4− 2− 0 2 4 6 8 10
λκ

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0tκ

 (13 TeV)-1138 fb
Observed      )σ68.3% CL (1
Expected      )σ95.4% CL (2
Best fit                           

CMS Preliminary

 = 12Vκ = Vκ

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Vκ

1−

0

1

2

3

42Vκ

 (13 TeV)-1138 fb
Observed            )      σ68.3% CL (1
Expected            )      σ95.4% CL (2
Best fit               )σ99.99994% CL (5

CMS Preliminary

 = 1tκ = λκ

NEW 

PUBLIC 

RELEASE CMS-PAS-HIG-20-011

http://TBD


Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH)

HEFT interpretations

12

The HH combination

Symmetry 2022, 14, 1467 7 of 29

The addition of new operators in the SMEFT and HEFT formalisms results in the
existence of new effective interactions, and the associated Feynman diagrams are shown
in Figure 5. In the SMEFT formalism, the method employed to determine the expansion
results in the existence of an additional chromomagnetic operator that implies a ttgH vertex,
but this is absent in the HEFT formalism. To date, this diagram is not simulated with the
NLO-accurate Monte Carlo tools discussed below in Section 1.3.4, and therefore, it is not
shown and further discussed here. Further information can be found in [32].

Figure 5. Representative diagrams at the lowest order for ggF HH production in and EFT description.
The diagram associated to the chromomagnetic operator, that appear only in the SMEFT formalism
but not in the HEFT one, and is thus far not modeled in the experimental analyses, is not shown here.

In addition to the ttH (kt) and HHH (kl) interactions, we obtain in this formalism the
ttHH (c2), ggH (cg) and ggHH (c2g) interactions, where the symbols in parentheses denote
the strength of the coupling.

In the SMEFT formalism, there is a relation that binds the value of kt to c2, and the
values of cg to c2g, so that there are, in practice, three free parameters involved in HH
production. Considering that much tighter constraints on kt and cg are expected to be set
in single Higgs boson measurements, this means essentially that the only parameter that
HH measurements can help to constrain is kl.

Conversely, in the HEFT formalism, all five interactions are independent, and their
effects should be all considered simultaneously when interpreting the HH results. The five
couplings kl, kt, c2, cg, and c2g correspond, respectively, to the coefficients of the relevant
HEFT operators chhh, ctth, ctthh, cggh, and cgghh, as they are denoted in ref. [33]. Since the
exploration of a five-dimensional parameter space is computationally very challenging, ex-
periments have thus far taken the practical approach of studying “shape benchmarks” that
represent arbitrary combinations of (kl, kt, c2, cg, c2g) that are associated to characteristic
distributions of mHH. While these do not represent, per se, points of specific theoreti-
cal interest, they capture the main kinematic features that result from combinations of
the couplings, guiding the development of analyses and allowing for an evaluation of
their sensitivity to generic EFT scenarios. Two sets of benchmarks have been defined to
date, one based on leading-order (LO) modeling of the signal [31,34,35] and a more recent
one derived from the next-to-leading-order (NLO) simulation [36]. The values of these
benchmarks are shown in Table 2.

The -modifiers approach is useful but has many limitations. 

The Higgs Effective Field Theory (HEFT) is model independent 
approach to extending the SM to account for new physics. 

HEFT approach posits 5 couplings . 

20 HEFT benchmarks defined, i.e. 5D phase space sub-regions

κ

(λHHH, yt, c2, cg, c2g)
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The addition of new operators in the SMEFT and HEFT formalisms results in the
existence of new effective interactions, and the associated Feynman diagrams are shown
in Figure 5. In the SMEFT formalism, the method employed to determine the expansion
results in the existence of an additional chromomagnetic operator that implies a ttgH vertex,
but this is absent in the HEFT formalism. To date, this diagram is not simulated with the
NLO-accurate Monte Carlo tools discussed below in Section 1.3.4, and therefore, it is not
shown and further discussed here. Further information can be found in [32].

Figure 5. Representative diagrams at the lowest order for ggF HH production in and EFT description.
The diagram associated to the chromomagnetic operator, that appear only in the SMEFT formalism
but not in the HEFT one, and is thus far not modeled in the experimental analyses, is not shown here.

In addition to the ttH (kt) and HHH (kl) interactions, we obtain in this formalism the
ttHH (c2), ggH (cg) and ggHH (c2g) interactions, where the symbols in parentheses denote
the strength of the coupling.

In the SMEFT formalism, there is a relation that binds the value of kt to c2, and the
values of cg to c2g, so that there are, in practice, three free parameters involved in HH
production. Considering that much tighter constraints on kt and cg are expected to be set
in single Higgs boson measurements, this means essentially that the only parameter that
HH measurements can help to constrain is kl.

Conversely, in the HEFT formalism, all five interactions are independent, and their
effects should be all considered simultaneously when interpreting the HH results. The five
couplings kl, kt, c2, cg, and c2g correspond, respectively, to the coefficients of the relevant
HEFT operators chhh, ctth, ctthh, cggh, and cgghh, as they are denoted in ref. [33]. Since the
exploration of a five-dimensional parameter space is computationally very challenging, ex-
periments have thus far taken the practical approach of studying “shape benchmarks” that
represent arbitrary combinations of (kl, kt, c2, cg, c2g) that are associated to characteristic
distributions of mHH. While these do not represent, per se, points of specific theoreti-
cal interest, they capture the main kinematic features that result from combinations of
the couplings, guiding the development of analyses and allowing for an evaluation of
their sensitivity to generic EFT scenarios. Two sets of benchmarks have been defined to
date, one based on leading-order (LO) modeling of the signal [31,34,35] and a more recent
one derived from the next-to-leading-order (NLO) simulation [36]. The values of these
benchmarks are shown in Table 2.

The -modifiers approach is useful but has many limitations. 

The Higgs Effective Field Theory (HEFT) is model independent 
approach to extending the SM to account for new physics. 

HEFT approach posits 5 couplings . 

20 HEFT benchmarks defined, i.e. 5D phase space sub-regions
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The addition of new operators in the SMEFT and HEFT formalisms results in the
existence of new effective interactions, and the associated Feynman diagrams are shown
in Figure 5. In the SMEFT formalism, the method employed to determine the expansion
results in the existence of an additional chromomagnetic operator that implies a ttgH vertex,
but this is absent in the HEFT formalism. To date, this diagram is not simulated with the
NLO-accurate Monte Carlo tools discussed below in Section 1.3.4, and therefore, it is not
shown and further discussed here. Further information can be found in [32].

Figure 5. Representative diagrams at the lowest order for ggF HH production in and EFT description.
The diagram associated to the chromomagnetic operator, that appear only in the SMEFT formalism
but not in the HEFT one, and is thus far not modeled in the experimental analyses, is not shown here.

In addition to the ttH (kt) and HHH (kl) interactions, we obtain in this formalism the
ttHH (c2), ggH (cg) and ggHH (c2g) interactions, where the symbols in parentheses denote
the strength of the coupling.

In the SMEFT formalism, there is a relation that binds the value of kt to c2, and the
values of cg to c2g, so that there are, in practice, three free parameters involved in HH
production. Considering that much tighter constraints on kt and cg are expected to be set
in single Higgs boson measurements, this means essentially that the only parameter that
HH measurements can help to constrain is kl.

Conversely, in the HEFT formalism, all five interactions are independent, and their
effects should be all considered simultaneously when interpreting the HH results. The five
couplings kl, kt, c2, cg, and c2g correspond, respectively, to the coefficients of the relevant
HEFT operators chhh, ctth, ctthh, cggh, and cgghh, as they are denoted in ref. [33]. Since the
exploration of a five-dimensional parameter space is computationally very challenging, ex-
periments have thus far taken the practical approach of studying “shape benchmarks” that
represent arbitrary combinations of (kl, kt, c2, cg, c2g) that are associated to characteristic
distributions of mHH. While these do not represent, per se, points of specific theoreti-
cal interest, they capture the main kinematic features that result from combinations of
the couplings, guiding the development of analyses and allowing for an evaluation of
their sensitivity to generic EFT scenarios. Two sets of benchmarks have been defined to
date, one based on leading-order (LO) modeling of the signal [31,34,35] and a more recent
one derived from the next-to-leading-order (NLO) simulation [36]. The values of these
benchmarks are shown in Table 2.

The study of  is of particular interest as it is tightly  
correlated with  the  modifier. 

Profound motivation to perform dedicated  coupling scan. 
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The addition of new operators in the SMEFT and HEFT formalisms results in the
existence of new effective interactions, and the associated Feynman diagrams are shown
in Figure 5. In the SMEFT formalism, the method employed to determine the expansion
results in the existence of an additional chromomagnetic operator that implies a ttgH vertex,
but this is absent in the HEFT formalism. To date, this diagram is not simulated with the
NLO-accurate Monte Carlo tools discussed below in Section 1.3.4, and therefore, it is not
shown and further discussed here. Further information can be found in [32].

Figure 5. Representative diagrams at the lowest order for ggF HH production in and EFT description.
The diagram associated to the chromomagnetic operator, that appear only in the SMEFT formalism
but not in the HEFT one, and is thus far not modeled in the experimental analyses, is not shown here.

In addition to the ttH (kt) and HHH (kl) interactions, we obtain in this formalism the
ttHH (c2), ggH (cg) and ggHH (c2g) interactions, where the symbols in parentheses denote
the strength of the coupling.

In the SMEFT formalism, there is a relation that binds the value of kt to c2, and the
values of cg to c2g, so that there are, in practice, three free parameters involved in HH
production. Considering that much tighter constraints on kt and cg are expected to be set
in single Higgs boson measurements, this means essentially that the only parameter that
HH measurements can help to constrain is kl.

Conversely, in the HEFT formalism, all five interactions are independent, and their
effects should be all considered simultaneously when interpreting the HH results. The five
couplings kl, kt, c2, cg, and c2g correspond, respectively, to the coefficients of the relevant
HEFT operators chhh, ctth, ctthh, cggh, and cgghh, as they are denoted in ref. [33]. Since the
exploration of a five-dimensional parameter space is computationally very challenging, ex-
periments have thus far taken the practical approach of studying “shape benchmarks” that
represent arbitrary combinations of (kl, kt, c2, cg, c2g) that are associated to characteristic
distributions of mHH. While these do not represent, per se, points of specific theoreti-
cal interest, they capture the main kinematic features that result from combinations of
the couplings, guiding the development of analyses and allowing for an evaluation of
their sensitivity to generic EFT scenarios. Two sets of benchmarks have been defined to
date, one based on leading-order (LO) modeling of the signal [31,34,35] and a more recent
one derived from the next-to-leading-order (NLO) simulation [36]. The values of these
benchmarks are shown in Table 2.

The study of  is of particular interest as it is tightly  
correlated with  the  modifier. 

Profound motivation to perform dedicated  coupling scan. 
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• At NLO EW correction, the single-H 
boson production includes processes 
sensitive to  coupling





• The HH combination uses 3 more 
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** The list of analysis use in the HH+H combination can be found in the backup.
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Outlook : Run-3 improvements
New triggers : Run-3 for CMS means higher 

integrated lumi at higher selection efficiency!
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integrated lumi at higher selection efficiency!
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Figure 5: τ-tagging ROC curves. ParticleNet and UParT show similar 
performances. ParticleNet performs better at high misidentification rate and 
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CMS-DP-2024-066

200 300 400 500 600 700 800 900 1000
 (GeV)Reco

HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ig

ge
r E

ffi
ci

en
cy

 = 1λκ 4b with →HH 

| < 2.5η > 30 GeV, |
T

 4 jets, p≥Event selection: 

 4b) = 82%→(HHεRun 3 2023 HH trigger 

 4b) = 68%→(HHεRun 3 2022 HH trigger 

 4b) = 52%→(HHεRun 2 

 = 13, 13.6 TeVs

CMS
Simulation Preliminary

500 1000200 300 400 500 600 700 800 900 1000
 (GeV)Reco

HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ig

ge
r E

ffi
ci

en
cy

 = 1λκ 4b with →HH 

| < 2.5η > 30 GeV, |
T

 4 jets, p≥Event selection: 

 4b) = 82%→(HHεRun 3 2023 HH trigger 

 4b) = 68%→(HHεRun 3 2022 HH trigger 

 4b) = 52%→(HHεRun 2 

 = 13, 13.6 TeVs

CMS
Simulation Preliminary

200 400 600 800 1000
 (GeV)Reco

HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ig

ge
r E

ffi
ci

en
cy

 = 1λκ with hadτ 2b2→HH

| < 2.5,  loose b-tagging,η > 20 GeV, |
T

 2 jets, p≥Event selection: 

-identification τ| < 2.5, loose η > 20 GeV and |
T

 with pτ 2 ≥

 = 13.6 TeVs

CMS
Simulation Preliminary

) = 58%τ 2b2→(HHε-triggers: miss
T,EhadτHH or 

) = 43%τ 2b2→(HHεHH trigger: 

) = 34%τ 2b2→(HHε-triggers: hadτ

) = 3%τ 2b2→(HHε-trigger: miss
TE

0 500 1000200 400 600 800 1000
 (GeV)Reco

HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ig

ge
r E

ffi
ci

en
cy

 = 1λκ with hadτ 2b2→HH

| < 2.5,  loose b-tagging,η > 20 GeV, |
T

 2 jets, p≥Event selection: 

-identification τ| < 2.5, loose η > 20 GeV and |
T

 with pτ 2 ≥

 = 13.6 TeVs

CMS
Simulation Preliminary

) = 58%τ 2b2→(HHε-triggers: miss
T,EhadτHH or 

) = 43%τ 2b2→(HHεHH trigger: 

) = 34%τ 2b2→(HHε-triggers: hadτ

) = 3%τ 2b2→(HHε-trigger: miss
TE

NB : The mass spectrums were superimposed 
by hand for illustrative purpose only!!

CMS-DP-2023-050

https://cds.cern.ch/record/2904702/
https://cds.cern.ch/record/2868787?ln=en


Higgs 2024 - Uppsala, 5th November 2024Di-Higgs searches at CMS

- -

Jona Motta (Universität Zürich - UZH) 15

Outlook : Run-3 improvementsb-tagging performance

CMS-BTV 10

Figure 1: b-tagging ROC curves. UParT shows state-of-the-art 
performance for both c and light jet rejections.

c-tagging performance

CMS-BTV 12

Figure 3: c-tagging ROC curves. UParT shows state-of-the-art performance for 
both b and light jet rejections.

New triggers : Run-3 for CMS means higher 
integrated lumi at higher selection efficiency!

New taggers : targeting heavy- and light-flavour jet tagging, but also hadronic  decays!τ

Jet energy regression

CMS-BTV 16

Figure 6: Median of the raw regressed jet energy response. UParT shows a constant 
improvement compared to ParticleNet, especially in the most extreme |η| bin. ParticleNet being 
trained with Run 2 MC samples, the combination of the new training algorithm and the usage of 
Run3 MC samples lead to a better response estimation. First studies on the calibration of the jet 
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Outlook : Projections to the HL-LHC

16

• Projection to the HL-LHC performed for: 
bbbb, bb , bb , bbWW, and Multileton 

• Run-2 results projected up to the full HL-
LHC dataset (3000 fb-1)


• S2 : stat. syst. reduced with luminosity, 
theory syst. halved, MC stat. removed


• Results expressed in the hypothesis of 
HH not existing  combined limit  
shows that sensitivity is sufficient to 
establish HH existence 

• These results are already very 
conservative as they do not include all 
the Run-3 improvement just discussed!!

ττ γγ

→ < 1

NEW 

PUBLIC 

RELEASE

Follow Angela’s dedicated talk 
tomorrow for all the juicy details 
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Theory

σ HH) / →(pp σ95% CL limit on 

Expected: 0.9
-11000 fb

Expected: 0.6
-12000 fb

Expected: 0.5
-13000 fb

                     68% expected   
Median expected 95% expected   
                                          

CMS Projections Preliminary
 = 12Vκ = Vκ = tκ = λκ S2 scenario

(14 TeV)

CMS-PAS-HIG-20-011
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• Di-Higgs searches, with the goal of probing , are one of the main goals we have for 
the coming years 

• Run-2 analyses @ CMS showcased impressive improvement over previous expectations:  

•   and    

•  current tightest constraint @ CMS 

•  current tightest constraint @ LHC (  established at  ) 

• Run-3 analyses are underway and will become public soon  they constitutes a huge 
opportunity to further improve the results we have from Run-2, possibly reaching 
unexpected goals 

• Important trigger improvements have already been introduced for HH searches in Run-3 

• Run-3 also constitutes an important test-bench for new ideas that will ultimately be deployed 
at the HL-LHC

λHHH

σHH = 2.5 × σSM
HH σHH,VBF = 91 × σSM

HH,VBF

κλ ∈ [−1.02, + 7.19]

κ2V ∈ [0.69,1.35] κ2V ∼ 7σ

→

Conclusions
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BACKUP : Analysis included in the HH+H combination
4. Changes to the analyses entering the combination 5

Table 2: Analyses targeting HH searches included in this combination and the corresponding
HH production modes targeted with dedicated categories.

Analysis Int. luminosity ( fb�1) Targeted production modes References
HH ! ggbb 138 ggHH and qqHH [43]
HH ! ttbb 138 ggHH and qqHH [46]
HH ! 4b 138 ggHH and qqHH [47, 48]
HH (leptons) 138 ggHH [49]
HH ! WWbb 138 ggHH and qqHH [50]
VHH ! bbbb 138 VHH [51]

4.1 Overlap removal

Since the HH and single H analyses target the same H decay channels, a thorough study of
the possible sample overlaps is carried out. The single H analyses considered in this combina-
tion are orthogonal from each other thanks to the definition of their signal regions. The study
of the overlap between the different HH analyses selections was performed for the combina-
tion presented in [17] and the only relevant overlap was found between the two searches for
HH ! 4b in the resolved-jet and merged-jet final states. Additional selections applied in these
analyses are found to ensure the orthogonality with minimal impact on the final results. The
exception to this is the VHH ! bbbb [51] targeting a previously unexplored HH production
mode. The hadronic categories of the VHH ! bbbb analysis show significant overlap with
their corresponding counterparts in the HH ! 4b analysis. As the latter analysis sets stronger
constraints on kl, the hadronic categories of the VHH analysis are dropped in favor of the HH
analysis. For the possible overlaps between single H and HH analyses, possibly overlapping
regions are identified comparing the event selection of the analyses subcategories. Two analy-
sis regions are then considered to be overlapping if both categories in single H and HH select
more than 1% of the same events in single H simulation. The contamination of HH events
in single H analyses is negligible because of the low yield of the HH signal in the single H
analysis categories. In case two analysis regions are considered overlapping, one of the two is
dropped. The removal of the overlap is optimized to provide the highest sensitivity to kl, k f

and kV (Eq. (4)). Due to its comparatively low sensitivity and high expected overlap with the
H ! ZZ ! 4l analysis, the HH ! ZZbb ! 4l analysis [52] has not been included in this
combination. An overview of the overlaps found is given in Table 3. Channels with significant
overlaps will be discussed in the following.

Table 3: Summary of overlaps between the considered single H and HH analyses included in
this combination. Non-overlapping analyses are indicated by a X, overlaps removable with
negligible impacts on the combination are indicated by a X .

single H/ HH analysis HH ! ggbb HH ! ttbb HH ! 4b VHH ! bbbb HH (leptons) HH ! WWbb
H ! gg X X X X X X
H ! WW X X X X X X
tt H (leptons) X X X X X X
H ! µµ X X X X X X
H ! ZZ ! 4l X X X X X X
H ! bb (ggH, VH, ttH) X X X X X X
H ! tt X X X X X X
VHH ! bbbb X X X X X X

Overlap removal for H ! gg: A significant overlap is found between the ttH enriched
STSX 1.2 categories of the H ! gg analysis targeting p

H
T >120 GeV and the HH ! ggbb

analysis. Removing the ttH p
H
T >120 GeV categories would significantly impact the combina-
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Di-Higgs Analysis included in the HH+H combination

Single-Higgs analysis included in the HH+H combination : non-overlapping analyses are indicated by a ✔, 
overlaps removable with negligible impacts on the combination are indicated by a χ



BACKUP : HH SM signal modelling
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BACKUP : HEFT signal modelling

Merge all available NLO (LO) MCsamples  
in a   2D-histogram (mHH, |cos θ* | )

Reweigh with differential parametrisation 
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The addition of new operators in the SMEFT and HEFT formalisms results in the
existence of new effective interactions, and the associated Feynman diagrams are shown
in Figure 5. In the SMEFT formalism, the method employed to determine the expansion
results in the existence of an additional chromomagnetic operator that implies a ttgH vertex,
but this is absent in the HEFT formalism. To date, this diagram is not simulated with the
NLO-accurate Monte Carlo tools discussed below in Section 1.3.4, and therefore, it is not
shown and further discussed here. Further information can be found in [32].

Figure 5. Representative diagrams at the lowest order for ggF HH production in and EFT description.
The diagram associated to the chromomagnetic operator, that appear only in the SMEFT formalism
but not in the HEFT one, and is thus far not modeled in the experimental analyses, is not shown here.

In addition to the ttH (kt) and HHH (kl) interactions, we obtain in this formalism the
ttHH (c2), ggH (cg) and ggHH (c2g) interactions, where the symbols in parentheses denote
the strength of the coupling.

In the SMEFT formalism, there is a relation that binds the value of kt to c2, and the
values of cg to c2g, so that there are, in practice, three free parameters involved in HH
production. Considering that much tighter constraints on kt and cg are expected to be set
in single Higgs boson measurements, this means essentially that the only parameter that
HH measurements can help to constrain is kl.

Conversely, in the HEFT formalism, all five interactions are independent, and their
effects should be all considered simultaneously when interpreting the HH results. The five
couplings kl, kt, c2, cg, and c2g correspond, respectively, to the coefficients of the relevant
HEFT operators chhh, ctth, ctthh, cggh, and cgghh, as they are denoted in ref. [33]. Since the
exploration of a five-dimensional parameter space is computationally very challenging, ex-
periments have thus far taken the practical approach of studying “shape benchmarks” that
represent arbitrary combinations of (kl, kt, c2, cg, c2g) that are associated to characteristic
distributions of mHH. While these do not represent, per se, points of specific theoreti-
cal interest, they capture the main kinematic features that result from combinations of
the couplings, guiding the development of analyses and allowing for an evaluation of
their sensitivity to generic EFT scenarios. Two sets of benchmarks have been defined to
date, one based on leading-order (LO) modeling of the signal [31,34,35] and a more recent
one derived from the next-to-leading-order (NLO) simulation [36]. The values of these
benchmarks are shown in Table 2.

Event-based reweighing technique common

to all HH analyses to enhance statistics 

and keep MC generation at minimum


