Searches for singly- and doubly-charged Higgs bosons in ATLAS

Otilia Ducu, on behalf of ATLAS Collaboration

IFIN-HH, Bucharest, Romania

2024, November 5th

HIGGS 2024, Uppsala University

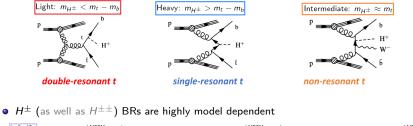
メロトメ 御 トメ ヨトメ ヨト ニヨー の

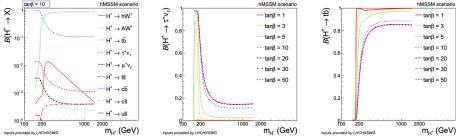
1/18

CHARGED HIGGS BOSONS

Well studied Higgs Sector extensions (CERN-EP-2024-094):

- Two-Higgs-doublet models (2HDMs):
 - Five physical scalar states: CP-even h^0 and H^0 , CP-odd pseudo-scalar A, and H^{\pm}
 - Such models can be described with 6 physical parameters:
 - Higgs masses: m_h , m_H , m_A and $m_{H^{\pm}}$
 - $tan\beta$, the ratio of the vacuum expectation values of the two doublets
 - α, that describes the mixing between the CP-even states


• The CP-conserving 2HDMs are categorized into four types:


- Type-I, type-II, lepton-specific, and flipped
- They differ in the way the Higgs fields couple to the SM particles:

2HDM Type	Up-type quarks couple to	Down-type quarks couple to	Charged leptons couple to
Type-I	Φ_2	Φ_2	Φ_2
Type-II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

- Three-Higgs-doublet models, 3HDMs that extends the SM by adding two more doublets
- The Georgi-Machacek (GM) model that extends the SM by adding two triplets or even higher multiplets in its most general form
- The type-II seesaw mechanism → an attractive model since it can predict massive neutrinos

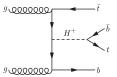
Three mass ranges usually studied (link):

- In 2HDM type II, below 200 GeV the $H^{\pm} \rightarrow \tau \nu_{\tau}$ decay is dominant, with $H^{\pm} \rightarrow cs$ or cb becoming more important at low tan β
- Above 200 GeV, the dominant decay is $H^{\pm} \rightarrow tb$
- <ロト 4 部 ト 4 書 ト 4 書 ト 書 め Q (や 3 / 18

Many charged Higgs boson searches performed in ATLAS, the latest being (link):

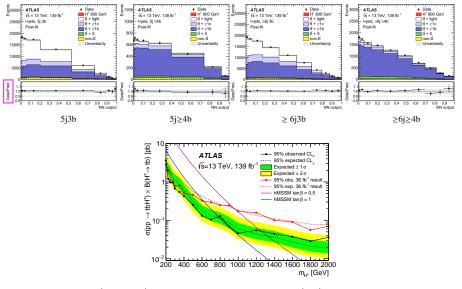
Charge Coupling Decay Mass range Integrated \mathcal{L} 36 fb⁻¹ Fermions $H^{\pm} \rightarrow \tau \nu$ 90-2000 GeV Singly-charged $H^{\pm} \rightarrow tb$ 200-2000 GeV 139 fb⁻¹ 139 fb⁻¹ $H^{\pm} \rightarrow cb$ 60-160 GeV $\overline{H^{\pm}} \rightarrow cs$ 60-168 GeV 140 fb^{-1} 139 fb⁻¹ Bosons $H^{\pm} \rightarrow W^{\pm}Z$ 200-1000 GeV $H^{\pm} \rightarrow W^{\pm}a$ 120-160 GeV 139 fb⁻¹ $H^{\pm\pm} \to \ell \ell'$ 139 fb⁻¹ Doubly-charged Fermions 400-1300 GeV $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 200-600 GeV 139 fb⁻¹ Bosons

• In this talk, only a selected set of analyses discussed


Run-2

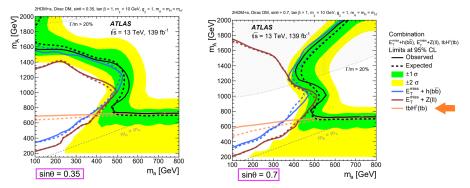
<ロト < 部 > < 言 > < 言 > こ き の Q (や 4 / 18

ATLAS $H^{\pm} \rightarrow tb$ search (<u>JHEP 06 (2021) 145</u>)


Search for singly charged Higgs H^{\pm} in association with a t and b, using 139 fb⁻¹ of data

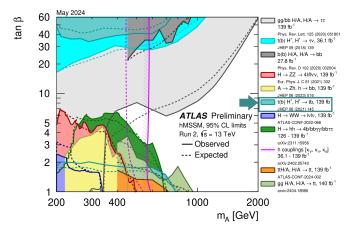
- Considered decay mode: $H^{\pm} \rightarrow tb$
- ightarrow Intermediate states with two tops and two bottoms
 - Analysis looking for final states with jets and one electron or muon

- Event selection: exactly one electron or muon ($p_T > 27$ GeV), at least five jets with at least three of them being b-tagged
- → Signal regions defined with 5j3b, $5j \ge 4b$, $\ge 6j3b$ and $\ge 6j \ge 4b$ event categories, using a neural network algorithm
 - All signal samples are used in the training against all background samples (weighted according to their x-sections)
 - Background sources:
 - tt+jets the main bkg; categorized according to the flavour of the jets in the event
 - $\rightarrow~$ Estimated using data-based corrections


Overall, very good agreement between data and the final bkg estimation:

• The observed (expected) limits range from $\sigma \times B = 3.6$ (2.6) pb at $m_{H^{\pm}} = 200$ GeV to $\sigma \times B = 0.036$ (0.019) pb at $m_{H^{\pm}} = 2$ TeV

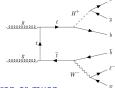
6/18


Results included in a Dark Matter interpretation (2HDM+a), Sci.Bull. 69 (2024) 19, 3005-3035 \rightarrow *a* being a pseudo-scalar mediator that couples to dark matter particles

• Dashed gray reg: indicate the region where the width of any of the Higgs bosons exceeds 20% of its mass

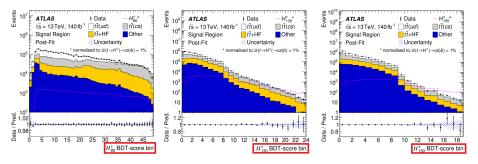
Results used also for constraints in the m_A and $\tan\beta$ plane, in hMSSM (ATL-PHYS-PUB-2024-008)

• The masses of charged bosons H^{\pm} at tree-level can be obtained from: $m_{H^{\pm}} = m_A^2 + m_{M^{\pm}}^2$



• At high tan β , $H^{\pm} \rightarrow tb$ search competitive with the $H^{\pm} \rightarrow \tau \nu$ search, especially in the low m_A region (< 500 GeV)

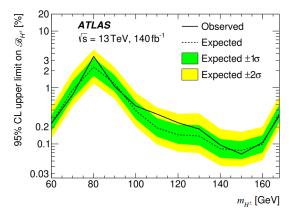
ATLAS $H^{\pm} \rightarrow cs$ search (<u>CERN-EP-2024-185</u>)


Search for light charged Higgs H^{\pm} produced in the decay of a t quark, using 140 fb⁻¹ of data

- Considered process: top pair production
- ightarrow Considered decay mode: $H^{\pm}
 ightarrow cs$
- Intermediate states with $W^{\mp}b H^{\pm}b$

- Analysis looking for final states with *b*-jets and one electron or muon
 - Leptons produced via leptonically decaying au-leptons are also included
 - Flavour-tagging algorithms used to tag jets as *b*-jets, *c*-jets or light-flavour jets
 - $\rightarrow\,$ Dedicated flavour-tagging scheme with simultaneous tagging of b-jets and c-jets used
- Signal regions defined with multivariate techniques (BDTs)
- tt
 +jets processes are the main background sources: same data-based corrections applied to
 both tt
 and signal samples
 - MC tt
 t t events separated in Heavy Flavor (tt
 t+b/c), and Light Flavor
 further split in tt
 (ud) and tt
 (cs), according to the W decays to ud or cs
- Multijet (MJ) processes when jets are misidentified as leptons or when real non-prompt leptons are produced in the decays of heavy-flavour hadrons – can also contribute

Overall, very good agreement between data and the final bkg estimation:

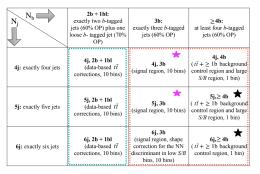


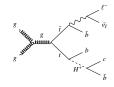
H_{80}^{\pm}		H_{150}^{\pm}	
Category	Relative contribution	Category	Relative contribution
Data statistical	6%	6% Data statistical	
Systematic	99.8%	Systematic	93%
Flavour-tagging	64%	tī modelling	72%
MC statistical	64%	MC statistical	35%
tī modelling	50%	Weak-boson & MJ modelling	27%
$\mu_{t\bar{t}} \& f_{LF}$	21%	Single-top-quark modelling	25%
Jet	19%	$\mu_{t\bar{t}} \& f_{LF}$	24%
Single-top-quark modelling	16%	Jet	23%
Luminosity & pile-up	15%	Flavour-tagging	20%
Weak-boson & MJ modellin	g 12%	Lepton & $E_{\rm T}^{\rm miss}$	8%
Signal modelling	8%	Luminosity & pile-up	7%
Lepton & $E_{\rm T}^{\rm miss}$	7%	Signal modelling	5%

 \rightarrow MC statistics and $t\bar{t}$ modelling: among the main unc sources

э

Observed and expected 95% CL upper limits on the branching fraction ℬ(t → H[±]b)
 → Assumption: ℬ(t → Wb) + ℬ(t → H[±](→ cs)b) is 100%

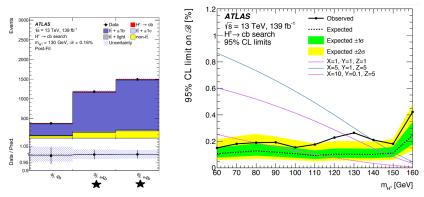



 Observed (expected) limits set between 0.066% (0.077%) and 3.6% (2.3%), in the 60 - 168 GeV mass range

ATLAS $H^{\pm} \rightarrow cb$ search (<u>JHEP 09 (2023) 004</u>)

Search for light charged Higgs H^{\pm} produced in the decay of a t quark, using 139 fb⁻¹ of data

- Considered process: top pair production
- Considered decay mode: $H^{\pm} \rightarrow cb$, $W^{\mp} \rightarrow \ell \nu$
- Signal generation: H[±] total width assumed to be 1 GeV, and its mass in the [60, 160] GeV interval
- Signal normalization: x-sec as for $t\bar{t}$ SM processes, assuming $\mathscr{B}(t \to H^{\pm}b) \times \mathscr{B}(H^{\pm} \to cb) = 1\%$


- A total of nine analysis bkg and signal regions considered
 - Signal regions defined with a neural network; main ones: (4j, 3b) and (5j, 3b)
 - (5j, ≥4b) and (6j, ≥4b) control regions highly enriched in tt + 1b bkg

イロト イポト イヨト イヨト

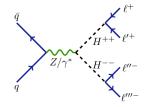
 Main bkg sources in all regions: tt processes (> 80%)

12 / 18

- Good data bkg expectation agreement in all regions of interest
- \rightarrow No excess in data in any of the signal regions

- Observed (expected) 95% CL upper limits on the branching fraction ℬ (ℬ(t→H[±]b) × ℬ(H[±]→cb)) as a function of H[±] mass
- $\rightarrow\,$ they range from 0.15% (0.09%) up to 0.42% (0.25%), depending on the H^{\pm} mass
 - Superimposed are also predictions from the 3HDM, corresponding to three benchmark values for the parameters X, Y, and Z

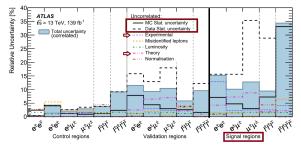
э

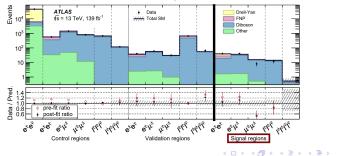

$H^{\pm\pm} \rightarrow \text{Multi-}\ell \text{ search } (\underline{\text{EPJC 83 (2023) 7, 605}})$

Search for Drell-Yan production of heavy charged Higgs $H^{\pm\pm}$, using 139 fb⁻¹ of data

- $\rightarrow~$ Using left-right symmetric type-II seesaw (LRSMs) and Zee–Babu models
 - $H^{\pm\pm}$ decay modes depend on the vacuum expectation value of the Higgs triplet
 - In this analysis set to be $< 10^{-8}$ GeV \rightarrow only leptonic decays relevant (*WW* ones suppressed)
 - Lepton-flavour-violating decays (e.g $H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$) also allowed in the model

Signal regions defined per lepton multiplicity/flavor:


- SR2L: $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$
- SR3L: ℓ[±]ℓ[±]ℓ[∓]
- SR4L: ℓ⁺ℓ⁺ℓ[−]ℓ[−]


Background sources

- Electron charge flip
- Fake/non-prompt leptons
- SM irreducible processes

• Uncertainty sources breakdown:

• Observed and expected events in the defined regions:

- Observed (expected) 95% CL upper limits on the production x-section
- ightarrow assuming $\sum_{\ell\ell'} \mathscr{B}(H^{\pm\pm}
 ightarrow \ell^{\pm}\ell^{'\pm}) =$ 100%, with $\ell = e, \ \mu, \ au$

- Depending on the lepton multiplicity channel, the excl limits vary between 520 GeV and 1050 GeV for LRSMs, and between 410 GeV and 880 GeV for the Zee-Babu model
- \rightarrow SR with the highest sensitivity the 4-lepton one

- ullet Several analyses finalized or ongoing in ATLAS targeting ${\cal H}^\pm$ or ${\cal H}^{\pm\pm}$ BSM bosons
- $\rightarrow~$ Using both 13 TeV Run-2 data, as well as 13.6 TeV Run-3 data
- No significant excess over the SM expectation found in any published analysis
- $\rightarrow~$ Stringent limits were set on the production cross section $\times~BR$
 - More results to come!

Thank you!

< □ > < 部 > < 差 > < 差 > 差 の Q (~ 18 / 18