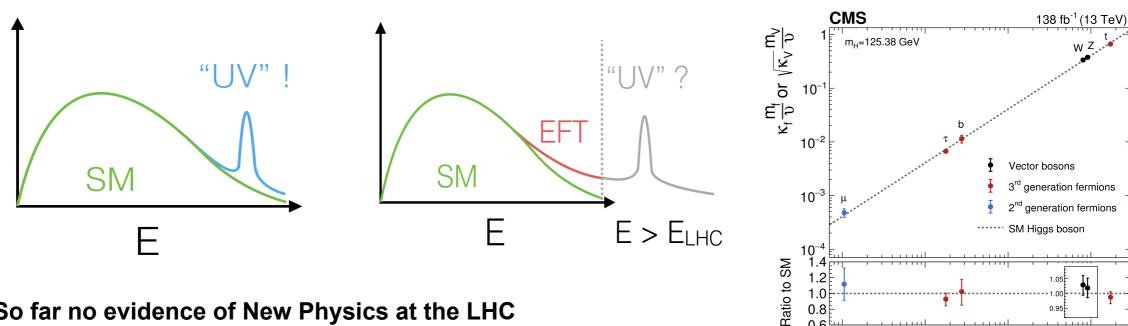


EFT interpretations in the Higgs sector at CMS


Vasilije Perovic (ETH Zurich) On behalf of CMS Collaboration

Higgs 2024

Searching for New Physics?

So far no evidence of New Physics at the LHC

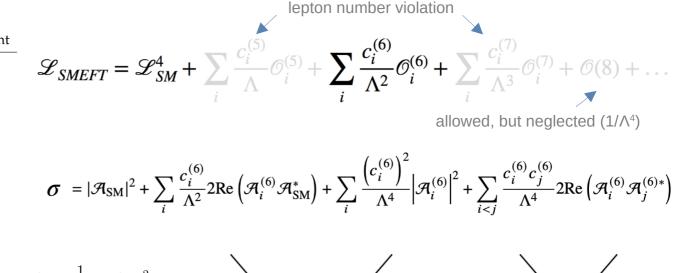
- \rightarrow NP at energies reachable by the LHC \rightarrow **direct** searches for BSM
- \rightarrow NP at energies **beyond** LHC \rightarrow **indirect** searches for NP \rightarrow **EFT** ("model-independent"), ...

Look for the smallest deviations with the highest available precision!

0.8 0.6

10⁻¹

 10^{2}


Particle mass (GeV)

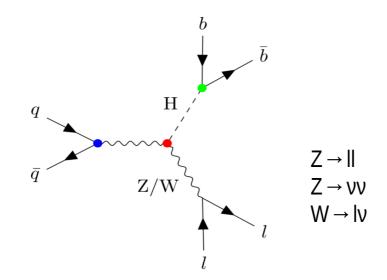
10

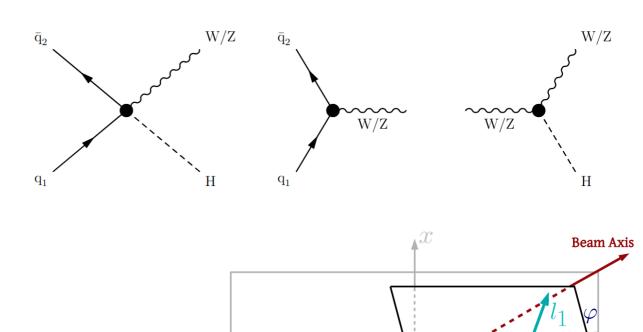
SM Effective Field Theory (SMEFT)

Operator	Definition	Wilson	Operator	Definition	Wilson
		coefficient			coefficient
${\cal O}_{\rm Hq}^{(1)}$	$i\mathrm{H}^{\dagger}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{q}}_{\mathrm{L}}\gamma^{\mu}\mathrm{q}_{\mathrm{L}}$	$c_{ m Hq}^{(1)}$	$\mathcal{O}_{\mathrm{HWB}}$	$\mathrm{H}^{\dagger}\sigma^{a}\mathrm{HW}^{a}_{\mu\nu}\mathrm{B}^{\mu\nu}$	$c_{\rm HWB}$
${\cal O}_{Hq}^{(3)}$	$i\mathrm{H}^{\dagger}\sigma^{a}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{q}}_{\mathrm{L}}\sigma^{a}\gamma^{\mu}\mathrm{q}_{\mathrm{L}}$	$c_{\rm Hq}^{(3)}$	$\mathcal{O}_{\mathrm{H}\widetilde{\mathrm{W}}\mathrm{B}}$	$\mathrm{H}^{+}\sigma^{a}\mathrm{H}\mathrm{W}^{a}_{\mu\nu}\widetilde{\mathrm{B}}^{\mu\nu}$	$c_{\mathrm{H}\widetilde{\mathrm{W}}\mathrm{B}}$
$\mathcal{O}_{\mathrm{Hu}}$	$i\mathrm{H}^{\dagger}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{u}}_{\mathrm{R}}\gamma^{\mu}\mathrm{u}_{\mathrm{R}}$	c _{Hu}	$\mathcal{O}_{\mathrm{HW}}$	$(H^{\dagger}H)W^{a}_{\mu\nu}W^{a\mu\nu}$	$c_{\rm HW}$
$\mathcal{O}_{\mathrm{Hd}}$	$i\mathrm{H}^{\dagger}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{d}}_{\mathrm{R}}\gamma^{\mu}\mathrm{d}_{\mathrm{R}}$	c _{Hd}	$\mathcal{O}_{\mathrm{H}\widetilde{\mathrm{W}}}$	$(H^{\dagger}H)W^{a}_{\mu\nu}\widetilde{W}^{a\mu\nu}$	$c_{\mathrm{H}\widetilde{\mathrm{W}}}$
$\mathcal{O}_{\mathrm{HD}}$	$(\mathrm{H}^{\dagger}D^{\mu}\mathrm{H})^{*}(\mathrm{H}^{\dagger}D_{\mu}\mathrm{H})$	c_{HD}	$\mathcal{O}_{\mathrm{HB}}$	$(H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$	c_{HB}
$\mathcal{O}_{\mathrm{H}\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	$c_{\mathrm{H}\square}$	$\mathcal{O}_{\mathrm{H}\widetilde{B}}$	$(H^{\dagger}H)B_{\mu\nu}\widetilde{B}^{\mu\nu}$	$c_{\mathrm{H}\widetilde{B}}$

$$\mathcal{L}_{SM}^{(4)} = -\frac{1}{4} G^{A}_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_{\mu}\varphi)^{\dagger} (D^{\mu}\varphi) + m^{2} \varphi^{\dagger} \varphi - \frac{1}{2} \lambda \left(\varphi^{\dagger}\varphi\right)$$

+ $i \left(\bar{l} \not\!\!D l + \bar{e} \not\!\!D e + \bar{q} \not\!\!D q + \bar{u} \not\!\!D u + \bar{d} \not\!\!D d\right) - \left(\bar{l} \Gamma_{e} e\varphi + \bar{q} \Gamma_{u} u \ddot{\varphi} + \bar{q} \Gamma_{d} d\varphi + \text{h.c.}\right)$


SMEFT


- \rightarrow Theoretically consistent and model-independent approach
- \rightarrow Operator expansion typically truncated at dim(6)
- \rightarrow 2499 operators are possible \rightarrow reduced to ~100 depending on the assumptions (flavour)
- \rightarrow Choice of operators depends on the process / an operator is not unique to a process

Fermi theory is an example of an EFT

CMS-PAS-HIG-23-016

JETS

- \rightarrow EFT effects simulated for the signal
- \rightarrow Optimal observables

VH(bb) EFT

- \rightarrow Boosted information tree separation of EFT effects from the SM signal and background
- → Measurement in three decay channels (0 or 2 charged leptons (Z) and 1 charged lepton (W)
- \rightarrow resolved + boosted b quark jets (below and above 250 GeV)

In ll CoM

 \mathcal{Z}

Θ

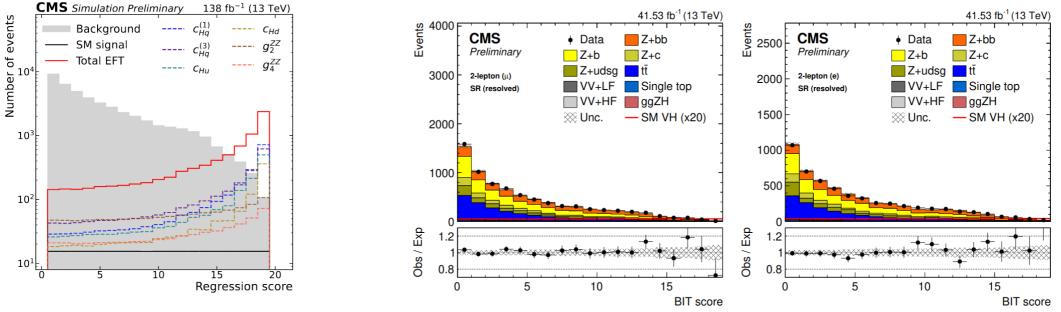
Plane of V-ll

🗌 Plane of pp-Vh 🌑 In Vh CoM

CMS-PAS-HIG-23-016

	Operator	Definition	Wilson	Operator	Definition	Wilson	
			coefficient			coefficient	
	$\mathcal{O}_{\mathrm{Hq}}^{(1)}$	$i\mathrm{H}^{\dagger}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{q}}_{\mathrm{L}}\gamma^{\mu}\mathrm{q}_{\mathrm{L}}$	$c_{ m Hq}^{(1)}$	$\mathcal{O}_{\rm HWB}$	$\mathrm{H}^{\dagger}\sigma^{a}\mathrm{H}\mathrm{W}^{a}_{\mu\nu}\mathrm{B}^{\mu\nu}$	c _{HWB}	CP-even
	${\cal O}_{\rm Hq}^{(3)}$	$i\mathrm{H}^{\dagger}\sigma^{a}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{q}}_{\mathrm{L}}\sigma^{a}\gamma^{\mu}\mathrm{q}_{\mathrm{L}}$	$c_{ m Hq}^{(3)}$	$\mathcal{O}_{\mathrm{H}\widetilde{\mathrm{W}}\mathrm{B}}$	$\mathrm{H}^{\dagger}\sigma^{a}\mathrm{HW}_{\mu u}^{a}\widetilde{\mathrm{B}}^{\mu u}$	$c_{\mathrm{H}\widetilde{\mathrm{W}}\mathrm{B}}$	CP-odd
	$\mathcal{O}_{\mathrm{Hu}}$	$i\mathrm{H}^{\dagger}\overleftrightarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{u}}_{\mathrm{R}}\gamma^{\mu}\mathrm{u}_{\mathrm{R}}$	c _{Hu}	$\mathcal{O}_{\mathrm{HW}}$	$(H^{\dagger}H)W^{a}_{\mu\nu}W^{a\mu\nu}$	$c_{ m HW}$	-
	$\mathcal{O}_{\mathrm{Hd}}$	$i\mathrm{H}^{\dagger}\overleftarrow{D}_{\mu}\mathrm{H}\bar{\mathrm{d}}_{\mathrm{R}}\gamma^{\mu}\mathrm{d}_{\mathrm{R}}$	c _{Hd}	$\mathcal{O}_{\mathrm{H}\widetilde{\mathrm{W}}}$	$(H^{\dagger}H)W^{a}_{\mu\nu}\widetilde{W}^{a\mu\nu}$	$c_{\mathrm{H}\widetilde{\mathrm{W}}}$	-
	$\mathcal{O}_{ m HD}$	$(\mathrm{H}^{\dagger}D^{\mu}\mathrm{H})^{*}(\mathrm{H}^{\dagger}D_{\mu}\mathrm{H})$	c _{HD}	$\mathcal{O}_{\mathrm{HB}}$	$(H^{\dagger}H) B_{\mu\nu}B^{\mu\nu}$	c_{HB}	-
	$\mathcal{O}_{\mathrm{H}\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	$c_{\mathrm{H}\square}$	$\mathcal{O}_{\mathrm{H}\widetilde{B}}$	$(H^{\dagger}H) B_{\mu\nu} \widetilde{B}^{\mu\nu}$	c _{HB̃}	-
$ \begin{array}{rcl} & & & & \\ & & & \\ & & & \\ $							
		$\sin \theta_{w} \cos \theta_{w}$					

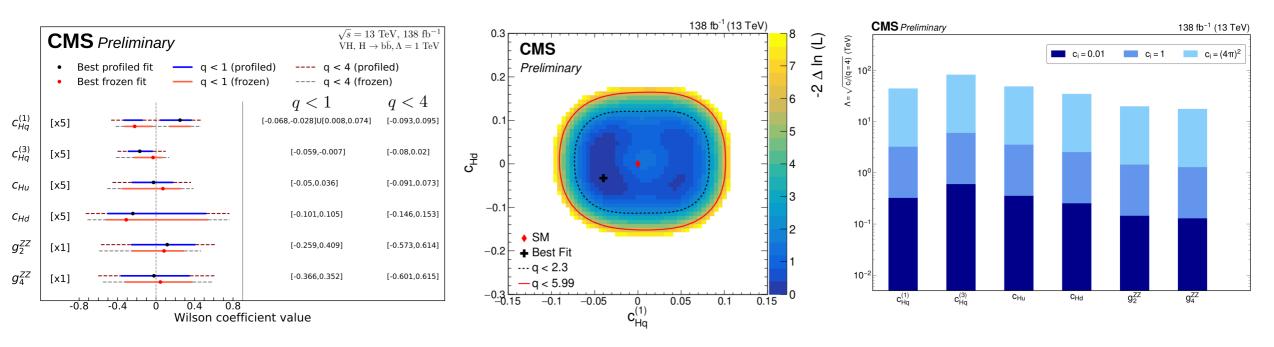
ETHzürich


Higgs 2024

VH(bb) EFT

VH(bb) EFT

CMS-PAS-HIG-23-016



- \rightarrow Boosted Information Tree (BIT) templates
- \rightarrow Optimal at a single point in the Wilson coefficient space \rightarrow not optimal elsewhere
 - \rightarrow Retain as much optimality as possible when profiling all six coefficients
 - → Avoid regions in the Wilson coefficient space where anticorrelation among coefficients plays a greater role
- \rightarrow Analysis channel / coefficient split for the optimisation \rightarrow still profiled together

VH(bb) EFT

CMS-PAS-HIG-23-016

- \rightarrow Wilson coefficients measured with others frozen at SM and freely floating
- \rightarrow 2D scans explore correlations between coefficients
- \rightarrow Limits reported on the cut-off scale for fixed values of Wilson coefficients
- \rightarrow Results in agreement with SM

$H \rightarrow WW$ anomalous couplings

ANOMALOUS COUPLINGS

 $a_1^{WW} = a_1^{ZZ},$

 $a_2^{\rm WW} = c_w^2 a_2^{\rm ZZ},$

 $a_3^{\rm WW} = c_{\rm w}^2 a_3^{\rm ZZ},$

$$\begin{aligned} a_{1}^{WW} &= a_{1}^{ZZ}, \\ a_{2}^{WW} &= c_{w}^{2}a_{2}^{ZZ}, \\ a_{3}^{WW} &= c_{w}^{2}a_{3}^{ZZ}, \\ \frac{k_{1}^{WW}}{(\Lambda_{1}^{WW})^{2}} &= \frac{1}{c_{w}^{2} - s_{w}^{2}} \left(\frac{k_{1}^{ZZ}}{(\Lambda_{1}^{ZZ})^{2}} - 2s_{w}^{2}\frac{a_{2}^{ZZ}}{m_{z}^{2}} \right), \\ \frac{k_{1}^{ZY}}{(\Lambda_{1}^{ZY})^{2}} &= \frac{2s_{w}c_{w}}{(\Lambda_{1}^{ZZ})^{2}} - \frac{a_{2}^{ZZ}}{m_{z}^{2}} \right), \end{aligned}$$

- \rightarrow Hgg and HVV couplings + CP violation using the different-flavour dilepton final state from H \rightarrow WW
- \rightarrow Production via ggH, VBF, and VH

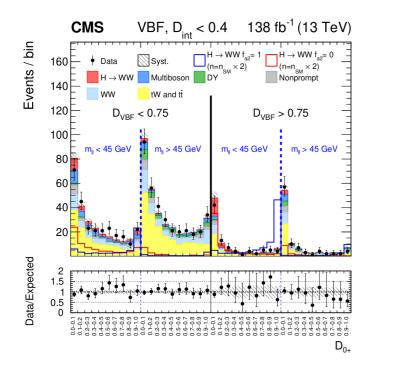
Higgs 2024

- \rightarrow Matrix element likelihood method (MELA)
- \rightarrow Constraints in terms of anomalous couplings as well as SMEFT (Higgs and Warsaw basis)
- \rightarrow Measuring fractional contributions of the anomalous couplings to the Higgs boson cross section

 $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_i |a_i|^2 \sigma_i} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$

$H \rightarrow WW$ anomalous couplings

Eur. Phys. J. C 84 (2024) 779



ANOMALOUS COUPLINGS	SMEFT – HIGGS BASIS	SMEFT – WARSAW BASIS
$a_1^{\mathrm{WW}} = a_1^{ZZ}$, $a_2^{\mathrm{WW}} = c_{\mathrm{w}}^2 a_2^{ZZ}$,	$\delta c_{\rm z} = \frac{1}{2}a_1^{\rm ZZ} - 1,$	$\delta a_1^{ZZ} = rac{v^2}{\Lambda^2} \left(2c_{\mathrm{H}\Box} + rac{6e^2}{s_{\mathrm{w}}^2} c_{\mathrm{HWB}} + (rac{3c_{\mathrm{w}}^2}{2s_{\mathrm{w}}^2} - rac{1}{2})c_{\mathrm{HD}} ight),$
$a_3^{\rm WW} = c_w^2 a_3^{\rm ZZ},$ $w_W = 1 (z_z^{\rm ZZ}, z_z^{\rm ZZ})$	$c_{zz} = -rac{2 s_{ m w}^2 c_{ m w}^2}{e^2} a_2^{ZZ}$,	$\kappa_1^{ZZ} = rac{v^2}{\Lambda^2} \left(-rac{2e^2}{s_w^2} c_{ m HWB} + (1-rac{1}{2s_w^2}) c_{ m HD} ight)$,
$\frac{\kappa_1^{\rm WW}}{(\Lambda_1^{\rm WW})^2} = \frac{1}{c_{\rm w}^2 - s_{\rm w}^2} \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} - 2s_{\rm w}^2 \frac{a_2^{ZZ}}{m_Z^2} \right),$	$ ilde{c}_{\mathrm{zz}}=-rac{2s_{\mathrm{w}}^2c_{\mathrm{w}}^2}{e^2}a_3^{\mathrm{ZZ}}$,	$a_2^{ZZ} = -2rac{v^2}{\Lambda^2} \left(s_{ m w}^2 c_{ m HB} + c_{ m w}^2 c_{ m HW} + s_{ m w} c_{ m w} c_{ m HWB} ight)$,
$\frac{\kappa_2^{Z\gamma}}{(\Lambda_1^{Z\gamma})^2} = \frac{2s_{\rm w}c_{\rm w}}{c_{\rm w}^2 - s_{\rm w}^2} \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} - \frac{a_2^{ZZ}}{m_Z^2}\right),$	$c_{z\Box} = rac{m_Z^2 s_{ m w}^2}{e^2} rac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2},$	$a_3^{ZZ} = -2rac{v^2}{\Lambda^2} \left(s_w^2 c_{\mathrm{H}\tilde{B}} + c_w^2 c_{\mathrm{H}\tilde{W}} + s_w c_w c_{\mathrm{H}\tilde{W}B} ight),$

- \rightarrow Hgg and HVV couplings + CP violation using the different-flavour dilepton final state from H \rightarrow WW
- \rightarrow Production via ggH, VBF, and VH
- \rightarrow Matrix element likelihood method (MELA)
- \rightarrow Constraints in terms of anomalous couplings as well as SMEFT (Higgs and Warsaw basis)
- \rightarrow Measuring fractional contributions of the anomalous couplings to the Higgs boson cross section

 $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$

$H \rightarrow WW$ anomalous couplings

$$\mathcal{D}_{\text{sig}} = \frac{\mathcal{P}_{\text{sig}}(\Omega)}{\mathcal{P}_{\text{sig}}(\Omega) + \mathcal{P}_{\text{bkg}}(\Omega)}$$

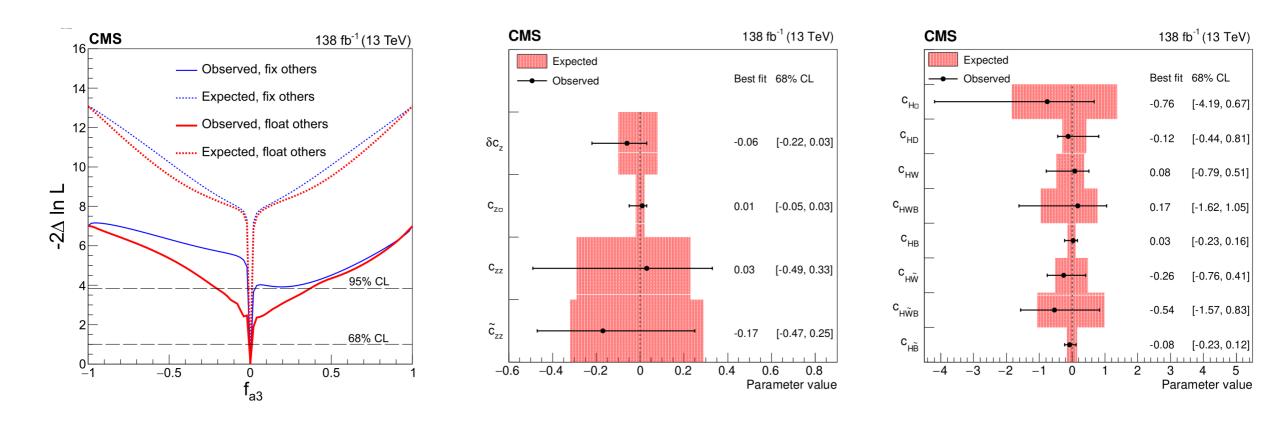
$$\mathcal{D}_{\rm BSM} = \frac{\mathcal{P}_{\rm BSM}(\Omega)}{\mathcal{P}_{\rm BSM}(\Omega) + \mathcal{P}_{\rm SM}(\Omega)}$$

$$\mathcal{D}_{\text{int}} = \frac{\mathcal{P}_{\text{SM-BSM}}^{\text{int}}(\Omega)}{\mathcal{P}_{\text{SM}}(\Omega) + \mathcal{P}_{\text{BSM}}(\Omega)}$$

Eur. Phys. J. C 84 (2024) 779

Observables for HVV coupling:
→ two jets in VBF and VH
→ H→WW decay products
Observables for Hgg coupling:
→ two jets from ggH + 2 jets

Decay vertex discriminant: m_{II}

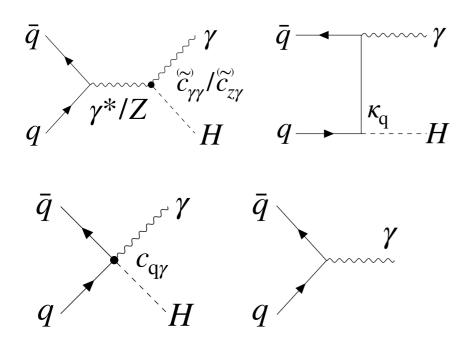

 \rightarrow Hgg and HVV couplings + CP violation using the different-flavour dilepton final state from H \rightarrow WW

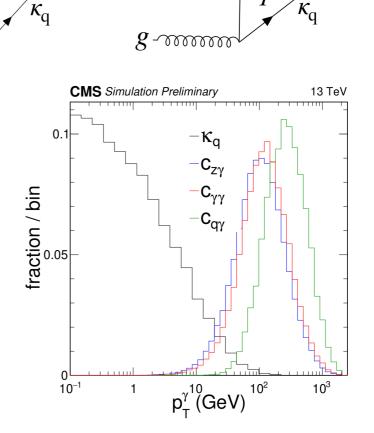
- \rightarrow Production via ggH, VBF, and VH
- \rightarrow Matrix element likelihood method (MELA)
- \rightarrow Constraints in terms of anomalous couplings as well as SMEFT (Higgs and Warsaw basis)

Eur. Phys. J. C 84 (2024) 779

$H \rightarrow WW$ anomalous couplings

<u>119</u> CMS


 \rightarrow 1-D likelihood profiles \rightarrow Correlations between coefficients explored

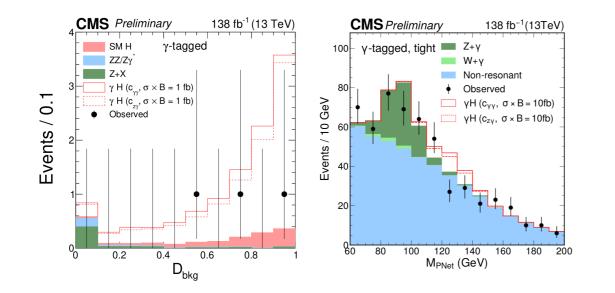

H \rightarrow ZZ \rightarrow 4I and H \rightarrow bb (H $\gamma\gamma$ and HZ γ anomalous couplings)

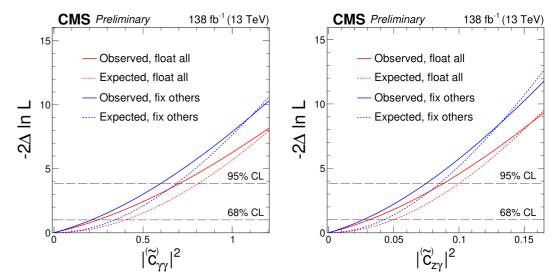
q

H

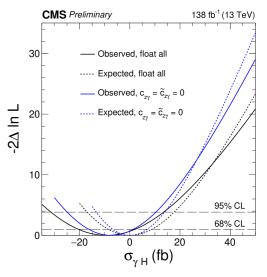
g

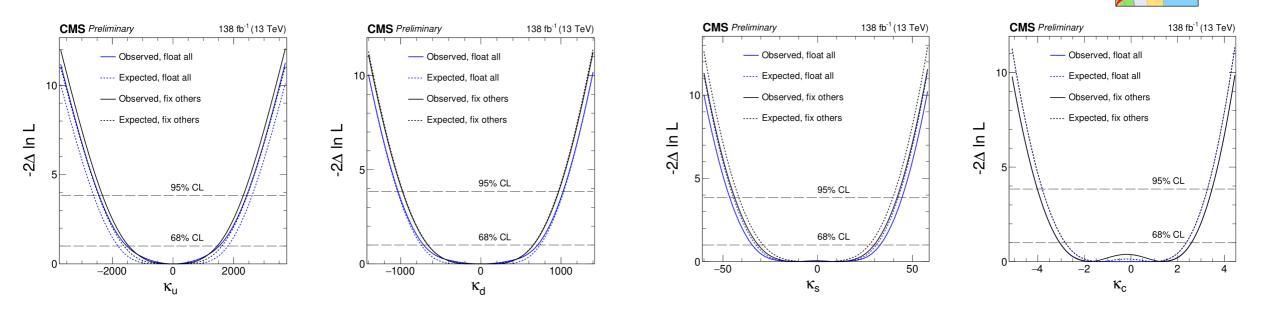
H


-000000


9

- \rightarrow Constraint on γ H production cross section
- \rightarrow H \rightarrow 4l and H \rightarrow bb final states are used for simultaneous constraints on four anomalous couplings in H $\gamma\gamma$ and HZ γ
- \rightarrow Matrix element likelihood method (MELA)
- \rightarrow Measured potential enhancements in the Yukawa couplings for the bottom and top quarks

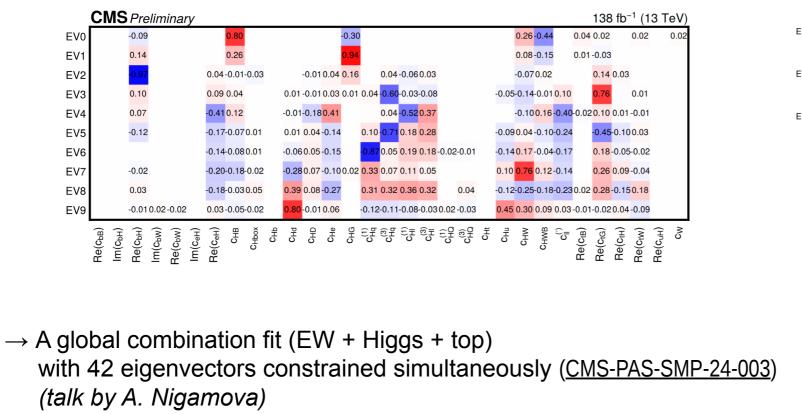

H \rightarrow ZZ \rightarrow 4I and H \rightarrow bb (H $\gamma\gamma$ and HZ γ anomalous couplings)

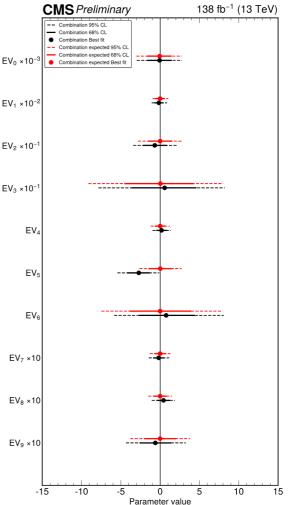


- → Fitted MELA discriminants in $H \rightarrow ZZ \rightarrow 4I$ and mass of the Higgs candidate (ParticleNet GNN) in $H \rightarrow bb$
- \rightarrow Constraints on Wilson coefficients in mass eigenstate basis
- \rightarrow Constraint on the γH production cross section derived from both channels
- \rightarrow Consistent with the Standard Model

H \rightarrow ZZ \rightarrow 4I and H \rightarrow bb (H $\gamma\gamma$ and HZ γ anomalous couplings)

- \rightarrow Potential enhancements in the Yukawa couplings between light quarks (u,d,s,c) and the Higgs boson \rightarrow Standard model assumption: $\kappa_b=1$, $\kappa_t=1$ when all are floated simultaneously
- \rightarrow Same Yukawa couplings for light quarks as those for the third generation ruled out with CL>95%


6/11/2024 15



ETH zürich

Higgs 2024

- \rightarrow Principal component analysis remove flat and unconstrained directions
- \rightarrow Constraints derived in individual channels lead to global constraints

CMS-PAS-HIG-23-013

Conclusions

EFT in Higgs at CMS now

- \rightarrow SMEFT is a theoretically consistent and model-independent approach
- \rightarrow Measurements performed in multiple analyses at dim(6)

VH (H→bb) BIT template optimisation H→WW anomalous coupling MELA multiple bases **Hγγ and HZγ anomalous coupling** MELA Yukawa coupling interpretation

- \rightarrow Individual channels combined in global fits
- \rightarrow No evidence for deviations from the Standard Model so far

ETHzürich

SMEFT – Warsaw basis

ETH zürich

Higgs 2024

$\mathcal{L}_6^{(1)}-X^3$		${\cal L}_6^{(6)}-\psi^2 X H$		${\cal L}_6^{(8b)}$ – $(ar R R)(ar R R)$	
Q_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \sigma^i H W^i_{\mu\nu}$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{abc} \widetilde{G}^{a u}_{\mu} G^{b ho}_{\nu} G^{c\mu}_{ ho}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{ijk}W^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \widetilde{H} G^a_{\mu\nu}$	Q_{dd}	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i\nu}_{\mu}W^{j\rho}_{\nu}W^{k\mu}_{\rho}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \sigma^i \tilde{H} W^i_{\mu\nu}$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$
	${\cal L}_6^{(2)}-H^6$		$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	Q_{ed}	$(\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t)$
Q_H	$(H^{\dagger}H)^3$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)$
	${\cal L}_6^{(3)}-H^4D^2$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \sigma^i H W^i_{\mu\nu}$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^a u_r) (\bar{d}_s \gamma^\mu T^a d_t)$
$Q_{H\square}$	$(H^\dagger H) \Box (H^\dagger H)$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$		
Q_{HD}	$\left(D^{\mu}H^{\dagger}H ight)\left(H^{\dagger}D_{\mu}H ight)$				
${\cal L}_6^{(4)}-X^2H^2$		${\cal L}_6^{(7)}-\psi^2 H^2 D$			$\mathcal{L}_6^{(8c)} - (ar{L}L)(ar{R}R)$
Q_{HG}	$H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$	Q_{le}	$(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu u}G^{a\mu u}$	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{i}_{\mu}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{HW}	$H^{\dagger}HW^{i}_{\mu u}W^{I\mu u}$	Q_{He}	$(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{e}_p\gamma^\mu e_r)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu u}W^{i\mu u}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{u}_s \gamma^\mu T^a u_t)$
Q_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{H \widetilde{W} B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{d}_s \gamma^\mu T^a d_t)$
${\cal L}_6^{(5)}-\psi^2 H^3$		$\mathcal{L}_{6}^{(8a)}$ – $(ar{L}L)(ar{L}L)$		${\cal L}_6^{(8d)} - (ar L R)(ar R L), (ar L R)(ar L R)$	
Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_{tj})$
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^a u_r) \varepsilon_{jk} (\bar{q}_s^k T^a d_t)$
		$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$
		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^i l_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

- \rightarrow Multiple operators contribute to the same process
- \rightarrow Same operator can affect multiple processes
- → Dedicated EFT measurements are needed AND their combination

Mass dimension counting: scalar or vector field: 1 fermion field: 3/2 field strength: 2 derivative: 1

Measure a catalogue of Wilson coefficients!

We need to choose a process, identify which operators affect it, and measure them.

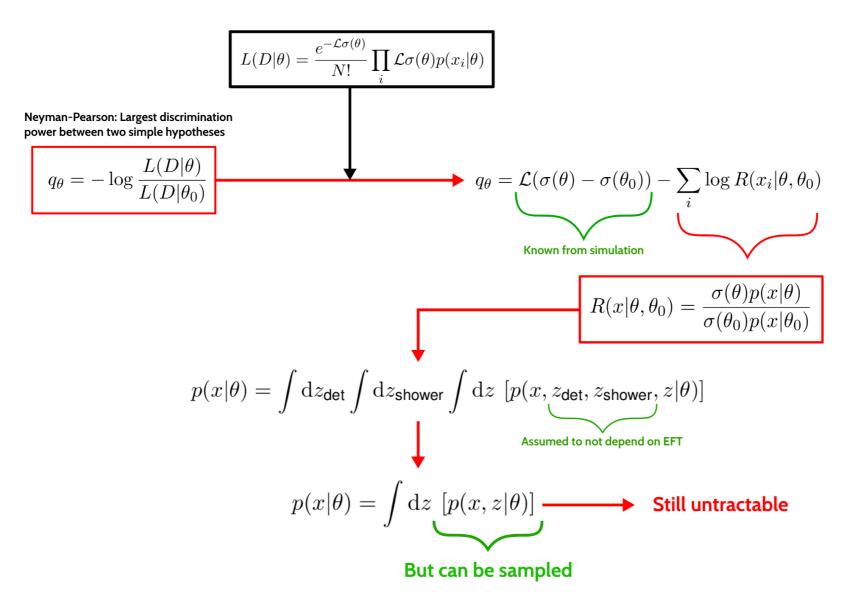
- \rightarrow dedicated EFT measurements
- \rightarrow e.g. STXS reinterpretation in EFT

With each event having an associated set of weights *w* for a given value of Wilson coefficients θ , the differential cross-section for the given parton-level configuration z_i is

$$w(\vec{\theta}, z_i) = \mathcal{L} \frac{\mathrm{d}\sigma_{\theta}(z)}{\mathrm{d}z} \Big|_{z=z_i} = \mathcal{L}\sigma_{\theta} p(z_i | \vec{\theta})$$

Parametrisation in terms of Wilson coefficients is propagated to the matrix element (no EFT in the propagator)

$$\mathcal{M} = \mathcal{M}_{\mathsf{SM}} + \sum_i rac{ heta_i}{\Lambda^2} \mathcal{M}_i$$


The probability distribution function at parton level is then a quadratic function of the Wilson coefficients parametrised by polynomial coefficients *s*:

$$w(\vec{\theta}, z_i) = s_0(z_i) + \sum_i s_{1i}(z_i) \frac{\theta_i}{\Lambda^2} + \sum_j s_{2j}(z_i) \frac{\theta_j^2}{\Lambda^4} + \sum_{j,k} s_{3jk}(z_i) \frac{\theta_j \theta_k}{\Lambda^4}$$

Vasilije Perovic

Boosted information tree

ETH zürich

Vasilije Perovic

Boosted information tree

$$L[g(x|\theta)] = -\int dz \frac{d\sigma(x, z|\theta)}{dz} \log(1 - g(x|\theta)) - \int dz \frac{d\sigma(x, z|\theta_0)}{dz} \log g(x|\theta)$$
$$\frac{\delta L}{\delta g} = 0 \implies g(x|\theta) = \frac{1}{1 + R(x|\theta, \theta_0)}$$
Assumption that EFT effects are negligible in showering and detector reconstruction

$$\frac{\frac{\mathrm{d}\sigma(x,z|\theta)}{\mathrm{d}z}}{\frac{\mathrm{d}\sigma(x,z|\theta_0)}{\mathrm{d}z}} \propto \frac{p(x,z|\theta)}{p(x,z|\theta_0)} \stackrel{\checkmark}{=} \frac{p(z|\theta)}{p(z|\theta_0)} = \underbrace{\frac{w(\theta,z)}{w(\theta_0,z)}}_{w(\theta_0,z)}$$

Ratio of weights used to simulate EFT effects

Polynomial dependency of EFT effects can be propagated to the LLH ratio Each BDT is estimating one coefficient function and is trained and optimised independently

ETHzürich