

Recent CMS searches for resonances decaying to HH and SH pairs

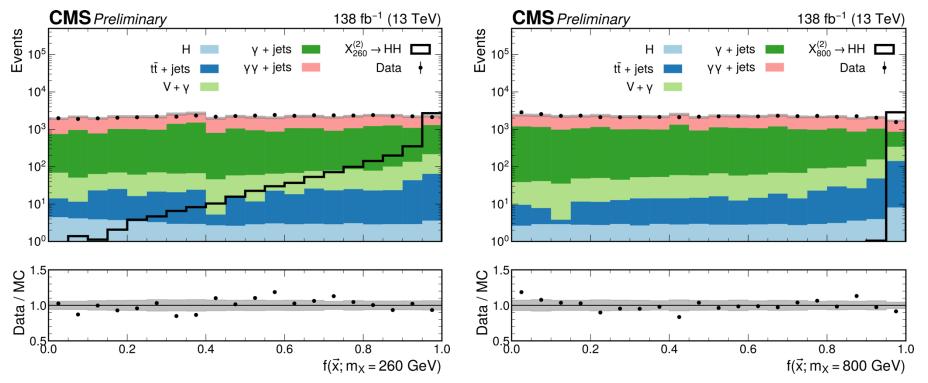
Davide Zuolo - University of Colorado Boulder

Outline

I will present the most recent public results on HH and SH searches performed by CMS using the LHC Run 2 dataset

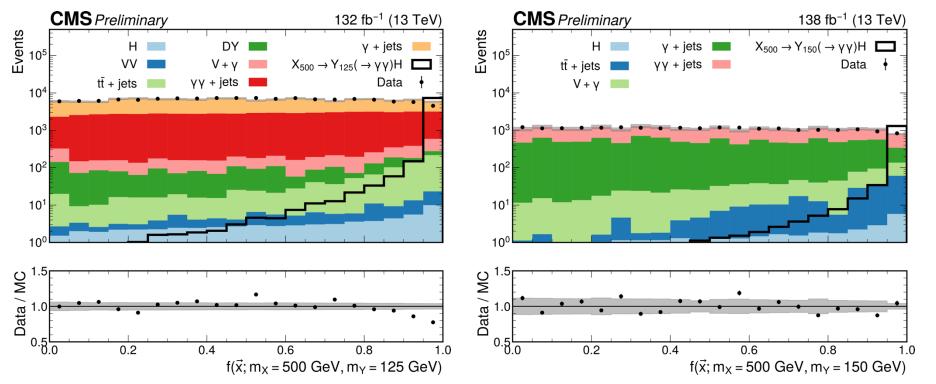
- CMS-PAS-HIG-22-012 Search for the nonresonant and resonant production of a Higgs boson in association with an additional scalar boson in the γγττ final state
- CMS-PAS-B2G-23-008 Search for a heavy resonance decaying into ZH in events with an energetic jet and two electrons, two muons, or missing transverse momentum
- B2G-23-002 Combination of searches for Higgs boson production through decays of heavy resonances
- CMS-PAS-HIG-20-012 Search for a new heavy scalar boson decaying into a Higgs boson and a new scalar particle in the four b-quarks final state

γγττ analysis - intro

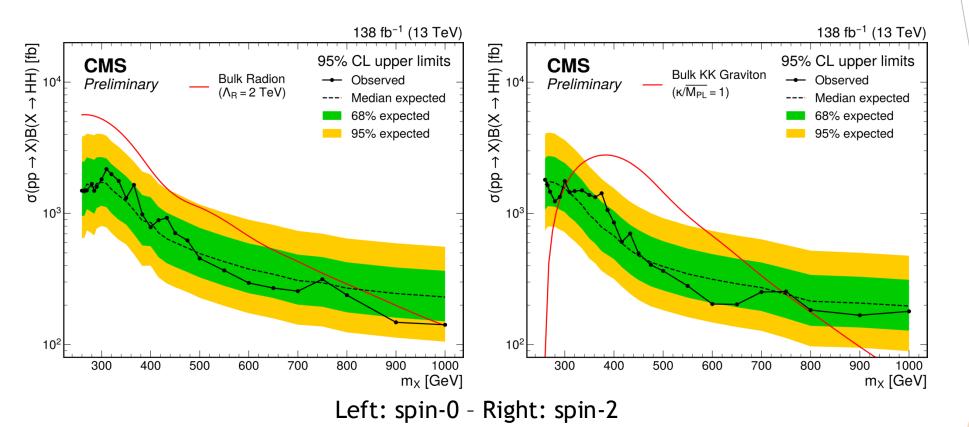

- First CMS analysis targeting this final state
- Small branching fraction but clean diphoton signature for trigger
- Nonresonant and resonant production modes via gluon fusion are studied
 - ► X → HH with <u>260 GeV < m_X < 1000 GeV</u>, both spin-0 (Radion) and spin-2 (Graviton) resonances as predicted in the Randall-Sundrum bulk model [1]
 - ► $X \rightarrow Y(\tau\tau)H(\gamma\gamma)$ and $X \rightarrow Y(\gamma\gamma)H(\tau\tau)$ following the NMSSM model [2]
 - > <u>300 GeV < m_X < 1000 GeV and m_X > m_Y + m_H in both cases</u>
 - ► <u>50 GeV < m_{Y} < 800 GeV</u> in X → Y($\tau\tau$)H($\gamma\gamma$)
 - ► <u>70 GeV < m_{Y} < 125 GeV in X \rightarrow Y($\gamma\gamma$)H($\tau\tau$) low mass</u>
 - ▶ <u>125 GeV < m_{γ} < 800 GeV in X → Y($\gamma\gamma$)H($\tau\tau$) high mass</u>
 - large variations in trigger efficiency and event kinematics for different Y(γγ) masses → analysis split in two mass ranges

CMS-PAS-HIG-22-012

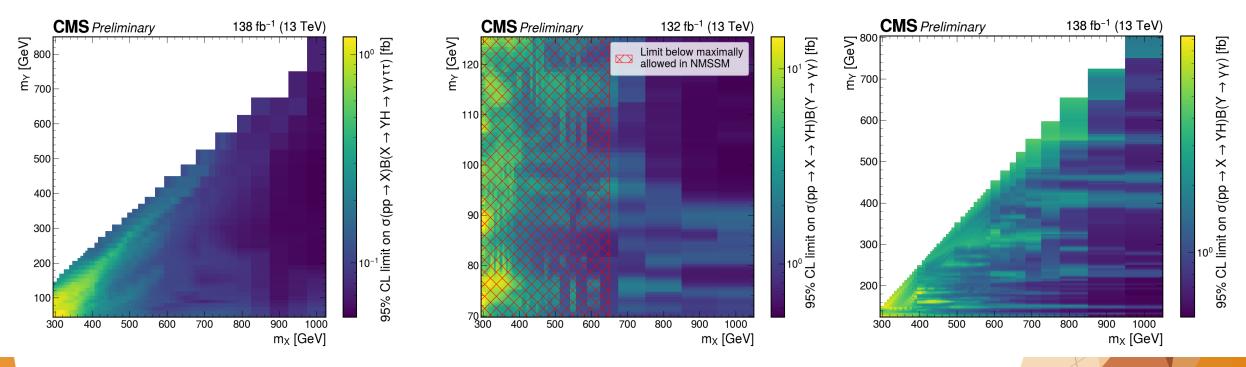
γγττ analysis - details


- Online trigger selections: two isolated photons, $p_T > 30$ GeV and $p_T > 18$ GeV
- <u>Offline selections</u>: kinematics, identification, $m_{\gamma\gamma}$ > 100 GeV (65 GeV for low mass Y($\gamma\gamma$)H($\tau\tau$))
- All the possible decays of tau pairs are considered offline $(e\tau_h, \mu\tau_h, \tau_h, \tau_h, ee, \mu\mu, e\mu)$
- Main backgrounds: $\gamma\gamma$ + jets (irreducible) and γ + jets (reducible), single Higgs production considered as resonant background
- Modeling: signal and single H are modeled using Double Crystal Ball functions while falling background is modeled using discrete profiling in $m_{\gamma\gamma}$ sidebands
- <u>Categorization</u> based on parametric Neural Network (pNN) [3] output
 - m_X and m_Y treated as conditional parameters
 - Category boundaries based on the number of expected background events
 - Optimization based on S/B leaded to insufficient number of data events to model background
- Signal extraction from maximum likelihood fit to m_{yy}

γγττ analysis - pNN - X \rightarrow HH


The classification problem evolves with $m_{\chi} \rightarrow it's$ easier to discriminate a high m_{χ} signal from background and the background itself changes

γγττ analysis - pNN - X \rightarrow YH


Please note the different legend (background composition) for low mass(left) and high mass(right) \rightarrow low mass region has a DY contribution from photon misld

$\gamma\gamma\tau\tau$ analysis - results - X \rightarrow HH

Zuolo - CMS searches for HH/SH - Higgs2024

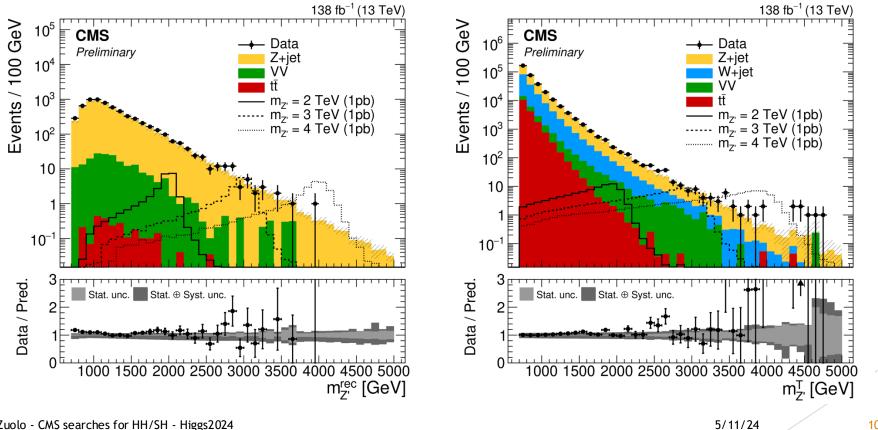
$\gamma\gamma\tau\tau$ analysis - results - X \rightarrow YH

Left: $X \rightarrow Y(\tau\tau)H(\gamma\gamma)$ - Middle: low mass $X \rightarrow Y(\gamma\gamma)H(\tau\tau)$ - Right: high mass $X \rightarrow Y(\gamma\gamma)H(\tau\tau)$ Observed limits below the maximally allowed can be used to provide tighter constraints on NMSSM

$Z' \rightarrow ZH$ analysis - intro

- ► Complement <u>previous CMS analysis</u> targeting $H \rightarrow cc$ and $H \rightarrow VV^* \rightarrow 4q$ final states exploring the mass range <u>1.4 TeV < m_z, < 5 TeV</u>
- Z' signal as described in the Heavy Vector Triplet (HVT) model [4]
- Online trigger selections: single lepton or large p_T^{miss}

Offline selections:

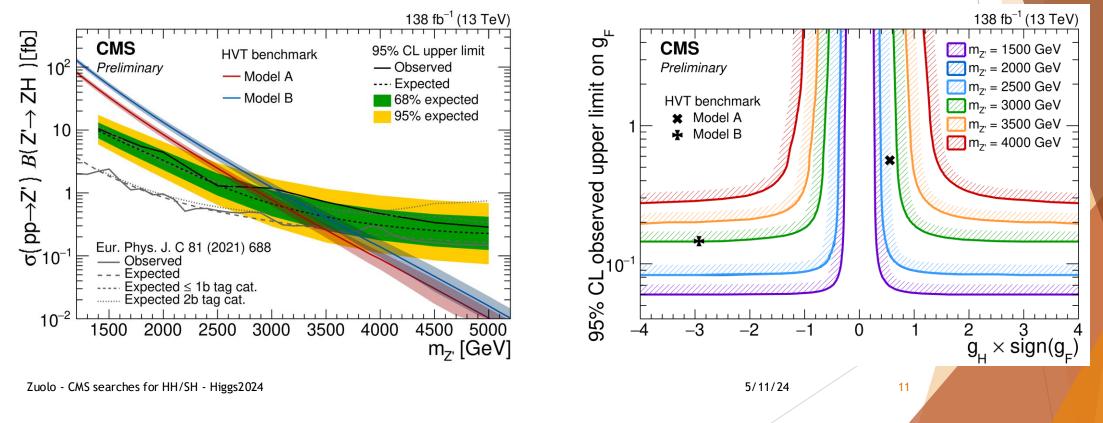

- > Z: opposite sign lepton pairs (ee and $\mu\mu$) with 81 GeV < m_{ll} < 101 GeV; $p_{T,ll}$ > 200 GeV; $\Delta R(l_1, l_2)$ < 0.45 OR no charged leptons and p_T^{miss} > 250 GeV
- H: 1 large-radius jets with p_T > 200 GeV and Δφ(H,Z) > 2, Tagged using ParticleNet [5]
- events with 2 b-tagged subjets are rejected to ensure orthogonality to previous analysis
- Main backgrounds: V(W,Z) + jets, modeled fitting a one-dimensional function to the observed data

Zuolo - CMS searches for HH/SH - Higgs2024

CMS-PAS-B2G-23-008

$Z' \rightarrow ZH$ analysis - observables

Signal is extracted from fit to ZH system invariant mass (ee and µµ channels, left) or transverse mass (neutrino channel, right)



10

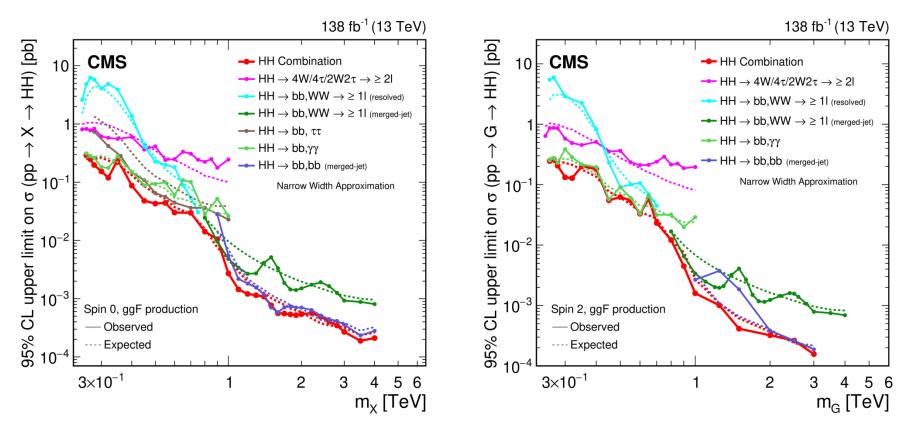
Zuolo - CMS searches for HH/SH - Higgs2024

$Z' \rightarrow ZH$ analysis - results

- Upper limits on cross sections are shown on left, compared to previous CMS analysis (grey lines) and two HVT benchmarks (red and blue lines)
- Two dimensional upper limits on the coupling parameters for fermions and bosons in the HVT model are shown on the right for different Z' masses

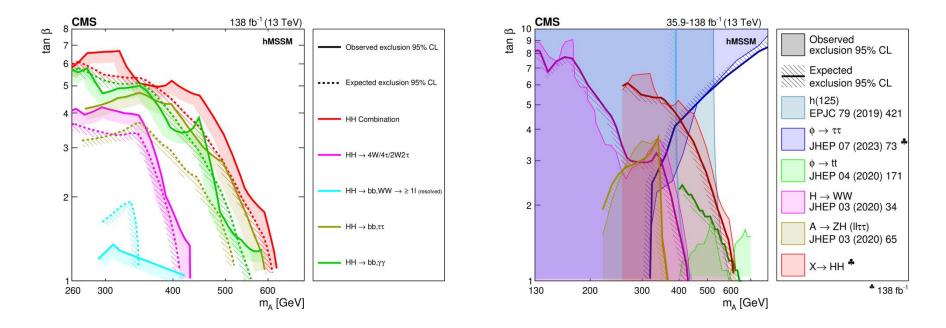
Combination

Target final state		Ref.	f. Mass coverage (GeV)		Comment
V	Н		m_{χ}		
$Z(\ell \ell)$	ττ	[107]	220 - 400		
$Z(\ell\ell+ u u)$	bb	[108]	225 - 1000		resolved jets
$W(\ell u)$	bb	[109]	1000 - 4500		$W \rightarrow \ell \nu$ and merged bb jet
$Z(\ell\ell)$	bb	[110]	800 - 4600		$Z \rightarrow \ell \ell / \nu \nu$ and merged bb jet
Z(qq)	bb	[111]	1300 - 6000		two merged jets
Н	Н		m_{χ}		
bb	$W(\ell\nu)W(\ell\nu+qq)$	[112]	250-900		resolved + merged
bb	$W(\ell v)W(\ell v + qq)$	[113]	800 - 4500		merged
$WW + \tau \tau$	$WW + \tau\tau$	[114]	250 - 1000		multilepton final state
Y	Н		m_{χ}	$m_{ m Y}$	
bb	ττ	[115]	240-3000	60-2800	resolved jets and $ au$ leptons
bb	$\gamma\gamma$	[116]	300 - 1000	90-800	resolved jets and photons
bb	bb	[117]	900 - 4000	60-600	two merged bb jets
NB: The result for m_{γ} = 130 GeV of the Y(bb)H($\tau\tau$) is used to estimate the result					

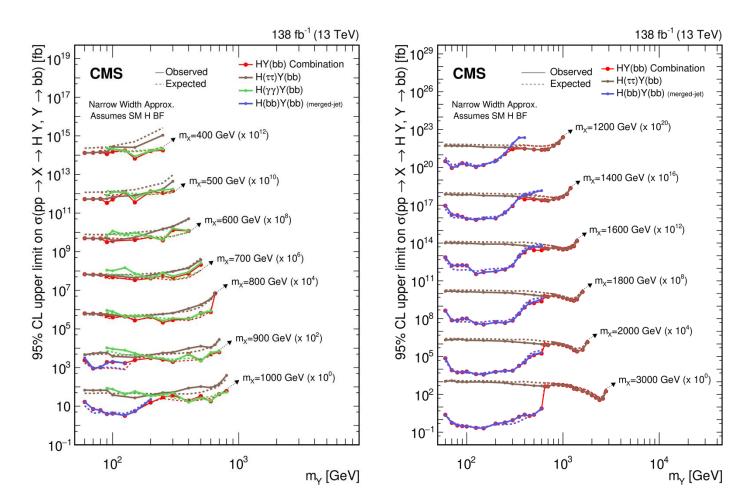

for HH production

12

5/11/24

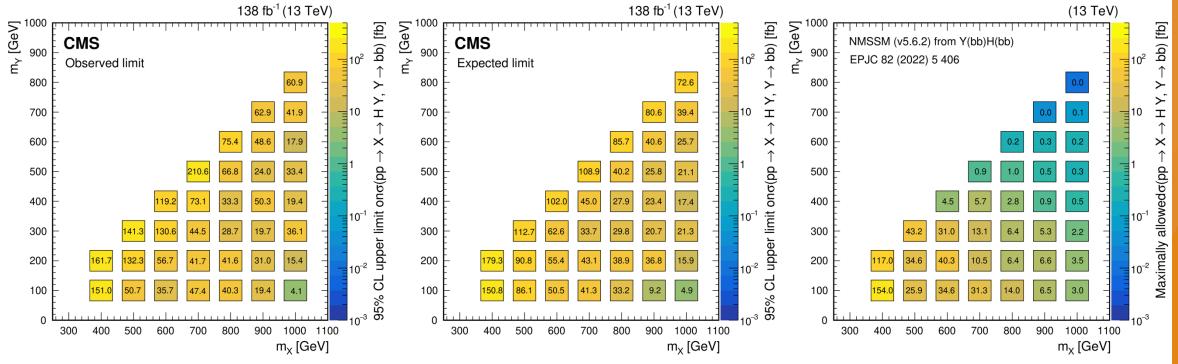

<u>B2G-23-002</u>

$X \rightarrow HH$ - model independent results


Highest sensitivity at low resonance mass comes from the $bb\gamma\gamma$ channel while at high mass the best results come from the bbbb channel (merged jet topology)

$X \rightarrow HH$ - model dependent results (hMSSM)

Constraints from HH searches are competitive with other searches for $m_A < 350$ GeV (tt threshold)


$X \rightarrow YH$ - model independent results

For presentation purposes, the limits have been scaled in successive steps by two order of magnitude, each. For each set of graphs, a black arrow points to the m_x related legend. Again, the bbbb channel (merged jet topology) drives the sensitivity at high m_x

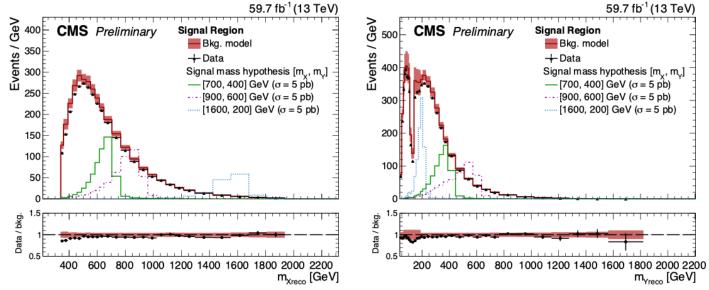
Zuolo - CMS searches for HH/SH - Higgs2024

Expected and observed limits for the combination of the CMS X \rightarrow YH analyses is compared to the maximally allowed values in the NMSSM

4b analysis - intro

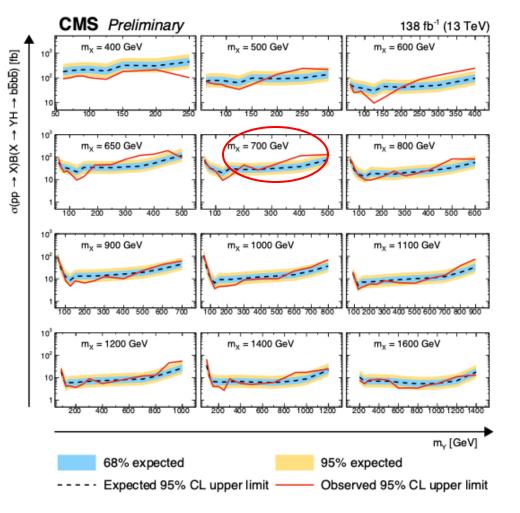
- ► X → YH with 400 GeV < m_{χ} < 1600 GeV and 60 GeV < m_{γ} < 1400 GeV
- Online trigger selections: 4 jets (3 tagged) OR high H_T (scalar sum of the transverse momentum of all jets in the event)
- Offline selections:
 - 4 (3) small radius jets tagged using the DeepJet [6] algorithm for signal dataset (control dataset)
 - \blacktriangleright H \rightarrow bb from highest invariant mass pair of jets
 - Three regions for background estimation
 - signal region (SR): |m_{H,reco} 125 GeV| < 20 GeV</p>
 - validation region (VR): 20 GeV < |m_{H,reco} 125 GeV| < 30 GeV</p>
 - ▶ control region (CR): 30 GeV < $|m_{H,reco} 125 \text{ GeV}| < 60 \text{ GeV}$

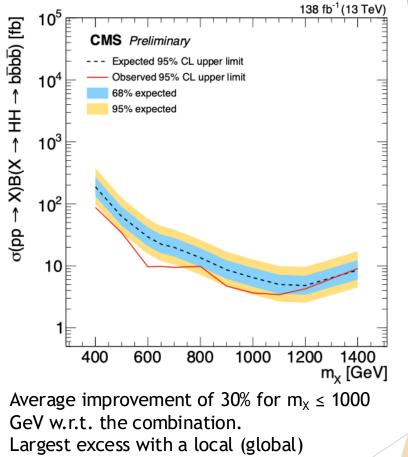
Zuolo - CMS searches for HH/SH - Higgs2024


5/11/24

17

CMS-PAS-HIG-20-012


4b analysis - details


- Data-driven background estimation via BDT reweighting [7]
 - model the difference between the 3b and 4b samples as a function of multiple observables
 - trained with collision data in the CR(3b) and CR(4b)
 - the orthogonal distance of the event in the $m_{X,reco} m_{Y,reco}$ plane from the diagonal defined by $m_{X,reco} m_{Y,reco} = 125$ GeV is used as input to provide correlated $m_{X,reco}$ and $m_{Y,reco}$ to the BDT
- Two-dimensional fit using the reconstructed masses of the X and Y scalars

Zuolo - CMS searches for HH/SH - Higgs2024

4b analysis - results

→ bōbō) [fb]

Ŧ

significance of 4.1 (2.8) standard deviations for $m_x = 700 \text{ GeV}$ and $m_y = 400 \text{ GeV}$

Zuolo - CMS searches for HH/SH - Higgs2024

Conclusions

- I presented here the most recent CMS searches for resonances decaying to HH and SH pairs
- A combination of these searches has been submitted to Physics Reports as part of a series of papers proposed by the journal to CMS and ATLAS collaborations
- The paper presents many more interpretations, studies of finite width resonances and interference with non-resonant production
- Projections of the results to HL-LHC integrated luminosity are also included
- CMS is currently wrapping up analyses using the LHC Run 2 dataset, and more results are expected to be made public during the winter

Thanks for your attention!

Zuolo - CMS searches for HH/SH - Higgs2024