

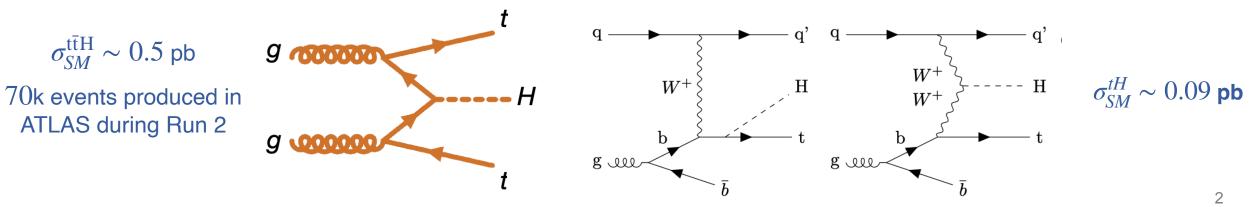
Measurements of Higgs boson production with top quarks with the ATLAS detector

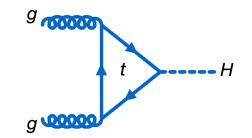
Nihal Brahimi

On behalf of the ATLAS collaboration

Higgs 2024 conference

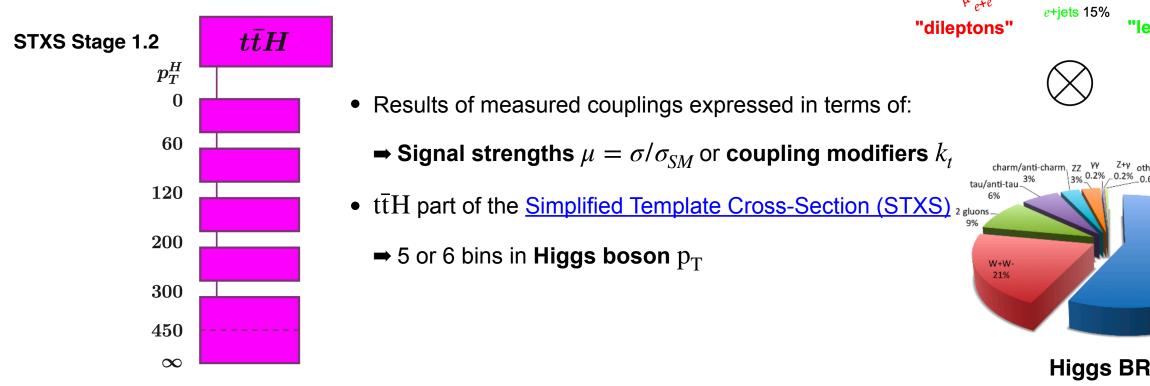
Funded by the European Union

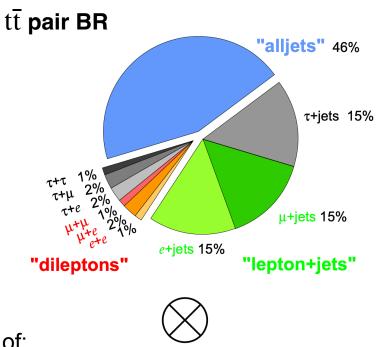

European Research Council Established by the European Commission


erc

DITTO - GA 101089007

Top Yukawa coupling: key interaction in the SM and BSM


- Higgs boson couples to fermions (Yukawa interaction) proportionally to their masses
 - → Top quark is the heaviest in the SM \Leftrightarrow Largest Yukawa coupling ($\lambda_t = \frac{m_t \sqrt{2}}{n} \sim 1$)
 - ➡ Sensitive probe to New physics (BSM)
 - \Rightarrow Gluon-gluon fusion and $H \rightarrow \gamma \gamma$ enable **indirect** access to λ_t in a model-dependent way
- Top-associated Higgs boson production provides a direct access to the top Yukawa
 - ightarrow t $ar{ ext{t}} ext{H}$: best way to measure λ_t (tree-level process), $\sigma_{ttH} \propto \lambda_t^2$
 - \Rightarrow tH: lower cross-section in the SM (mainly tHqb production)
 - \bigstar Interference between top and W couplings \rightarrow sensitive to the sign of λ_t and BSM effects

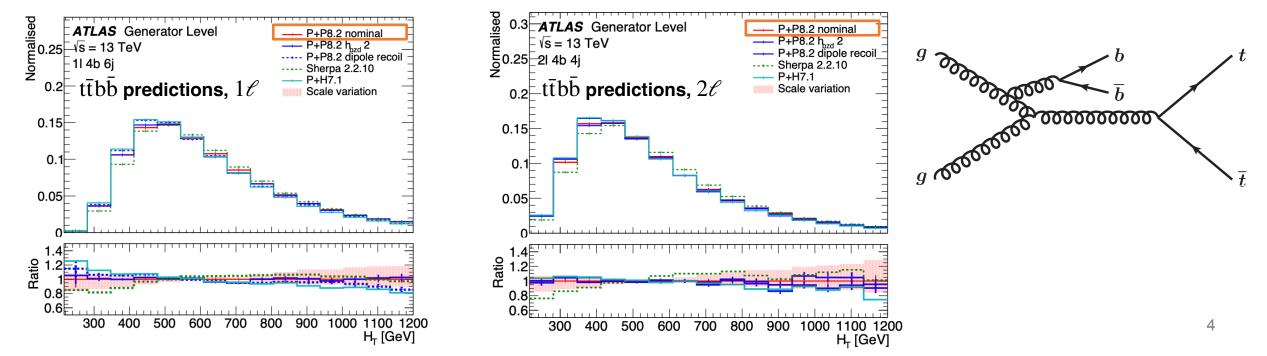


Top Yukawa coupling: measuring ttH/tH production

- Combination of top quarks and Higgs decays → variety of complex final states
 - \Rightarrow Many objects: jets, b-jets, light leptons (ℓ), hadronic taus (τ_{had}) and photons
- ttH production observed combining several final states in ATLAS and CMS
 - \Rightarrow established with > 5 σ significance
 - tH production not observed yet given very small cross-section in SM

Z+γ others 0.2% _0.2% 0.6%

bottom/ant

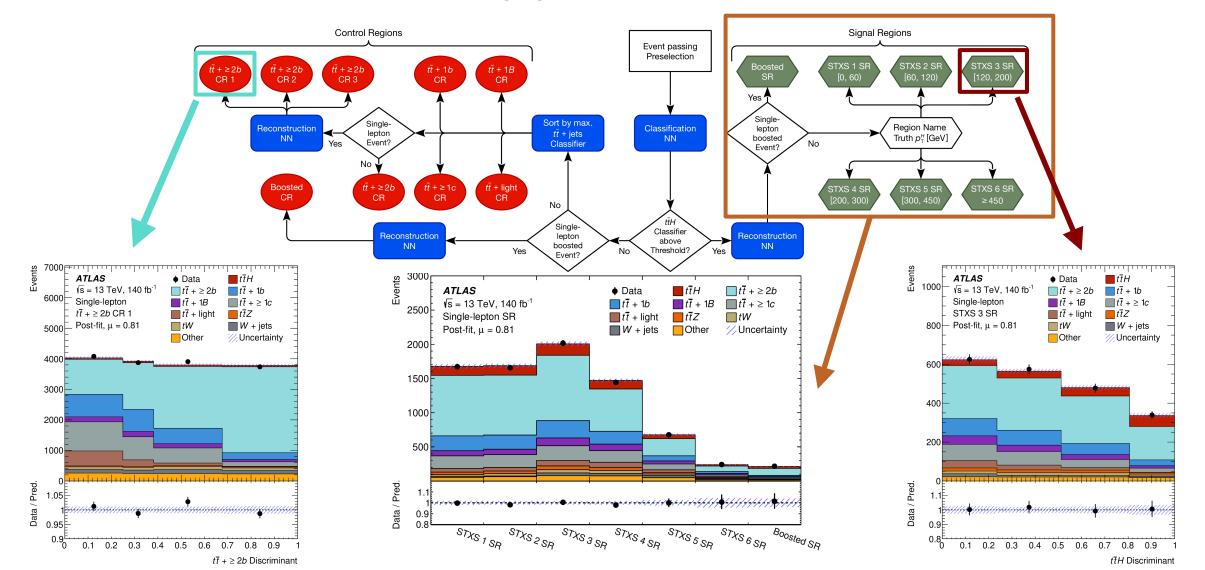

bottom

57%

3

Couplings/STXS: $t\bar{t}H(H \rightarrow b\bar{b})$ w/ 140 fb⁻¹ arXiv:2407.10904 (submitted to EPJC)

- Re-analysis of the full Run 2 data superseding the previous analysis JHEP 06 (2022) 97
- Targeting $H \rightarrow b\bar{b}$ mode with largest branching fraction (~ 58%) \rightarrow valuable contribution to Higgs combination at higher p_T^H
 - ⇒ Large and irreducible background from $t\bar{t} + b jets \rightarrow$ leading source of uncertainty in the previous round.
- Events categorised by $t\bar{t}$ decay ($1\ell/2\ell$) and p_T^H including 1ℓ boosted categories for $p_T^H>300~\text{GeV}$
- Major improvements in this round:
 - ➡ advanced b-jet identification algorithm (DL1r), consolidated physics objects
 - → Improved $t\bar{t} + \ge 1b$ modelling using a new MC sample with reduced associated systematics (<u>ATL-PHYS-PUB-2022-006</u>)

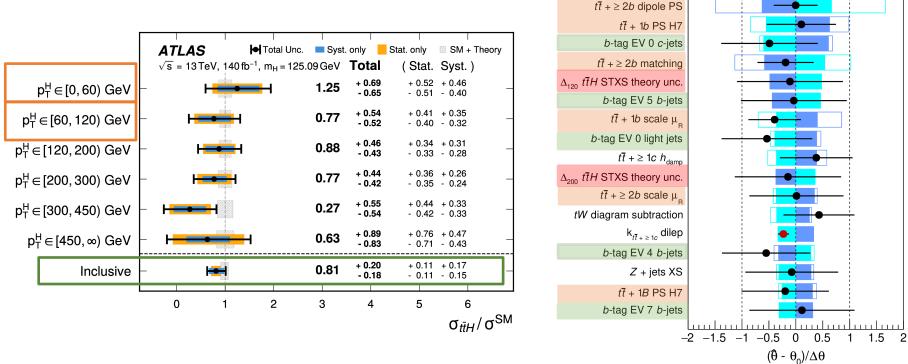


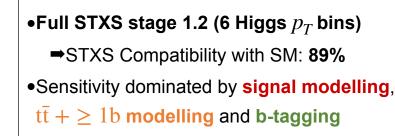
Couplings/STXS: $t\overline{t}H(H \rightarrow b\overline{b})$ w/ 140 fb $^{-1}$

5

➡ Enhanced event categorisation and reconstruction using transformer Neural Networks

Allowed to loosen kinematic preselection tripling signal events acceptance




Couplings/STXS: $t\bar{t}H(H \rightarrow bb)$ w/ 140 fb⁻¹

arXiv:2407.10904 (submitted to EPJC)

- Signal cross-section and bkg normalisations free-floating
- •Observed (expected) signal significance: 4.6 (5.4) σ
 - \Rightarrow Compared to 1.0 (2.7) σ in previous round

Highest precision achieved in single channel $t\bar{t}H$ cross-section measurement to date, both inclusive and differential

Pre-fit impact:

Post-fit impact:

 $\Theta = \hat{\Theta} + \Delta \Theta = \hat{\Theta} - \Delta \Theta$

 $\Theta = \hat{\Theta} + \Delta \hat{\Theta} = \Theta = \hat{\Theta} - \Delta \hat{\Theta}$

---- Nuis, Param, Pull

 $\Delta \sigma_{t\bar{t}H} / \sigma^{SM}$

0

 $(\hat{\theta} - \theta_0)/\Delta \theta$

0.05

0.1

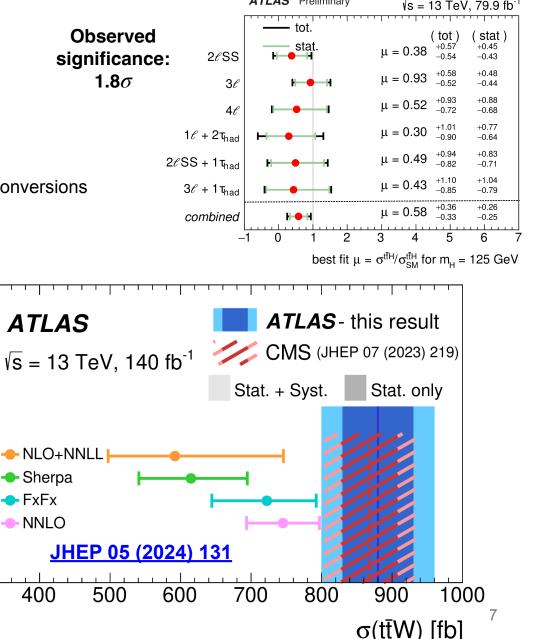
-0.1 -0.05

ATLAS

ttH FSR

tTH PS & had $t\overline{t} + \ge 2b$ FSR

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

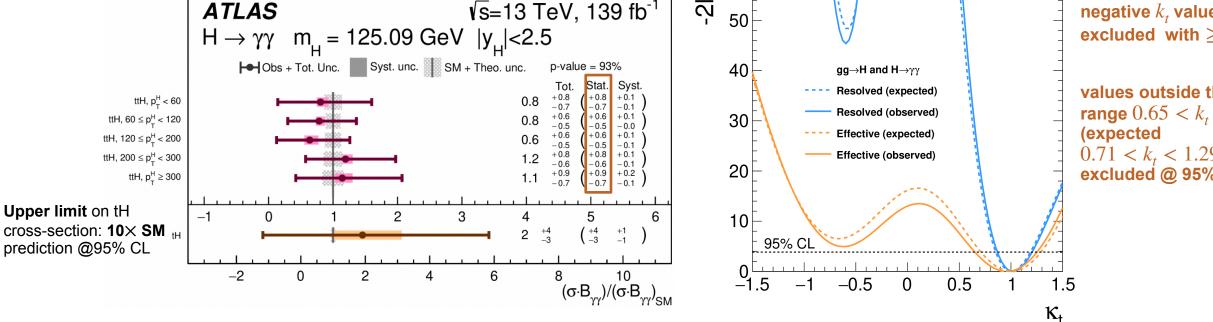

Couplings: $t\bar{t}H(H \rightarrow WW^*, ZZ^*, \tau\tau)$ w/ 80 fb⁻¹

- Relatively large branching ratios and low yet challenging backgrounds
- Targeting events with leptons in the H decay final states and leptonic $t\bar{t}$ decays
- ➡ 6 channels based on number, flavour and charge of lepton candidates
 Main based on number, flavour and charge of lepton candidates
- Main backgrounds:
 - → Irreducible: $t\bar{t}W$ (normalisation free-floated in the fit), $t\bar{t}Z$ and VV;
 - ➡ Reducible: non-prompt leptons, charge misID electrons and electrons from photon conversions

- $t\bar{t}W$ normalisation determined to be in the range ~ 1.3-1.7 $\,$ w.r.t Sherpa 2.2.1-based prediction
 - \Rightarrow ttt W modelling main limitation of analysis sensitivity
- Dedicated $t\bar{t}W$ cross-sections measurements w/140 fb⁻¹ performed:
 - tensions with predictions remain despite improved theoretical calculations accounting for higher order QCD and EW corrections
 - ➡ Key input for the background modelling in the legacy ttH-multilepton analysis.

ATLAS-CONF-2019-045, JHEP 05 (2024) 131

ATLAS Preliminary


Couplings/STXS: $t\bar{t}H/tH(H \rightarrow \gamma\gamma)$ w/ 139 fb⁻¹

- •Analysis targets several production modes \rightarrow focussing on $t\bar{t}H/tH$ production here
- Small BR but clear signal peak and low background level
- Refined event categorisation using Multiclass and binary BDTs \rightarrow 13 dedicated to $t\bar{t}H/tH$
 - \clubsuit Using $m_{_{\mathcal{V}\mathcal{V}}}$ as discriminant in the signal extraction fit
- k_t probed with **two different configurations**:
 - **Resolved:** k_t in ggF and H $\rightarrow \gamma \gamma$ loops
 - **Effective** : effective coupling $(k_g \text{ and } k_\gamma)$ fixed to the SM prediction

JHEP 07 (2023) 088

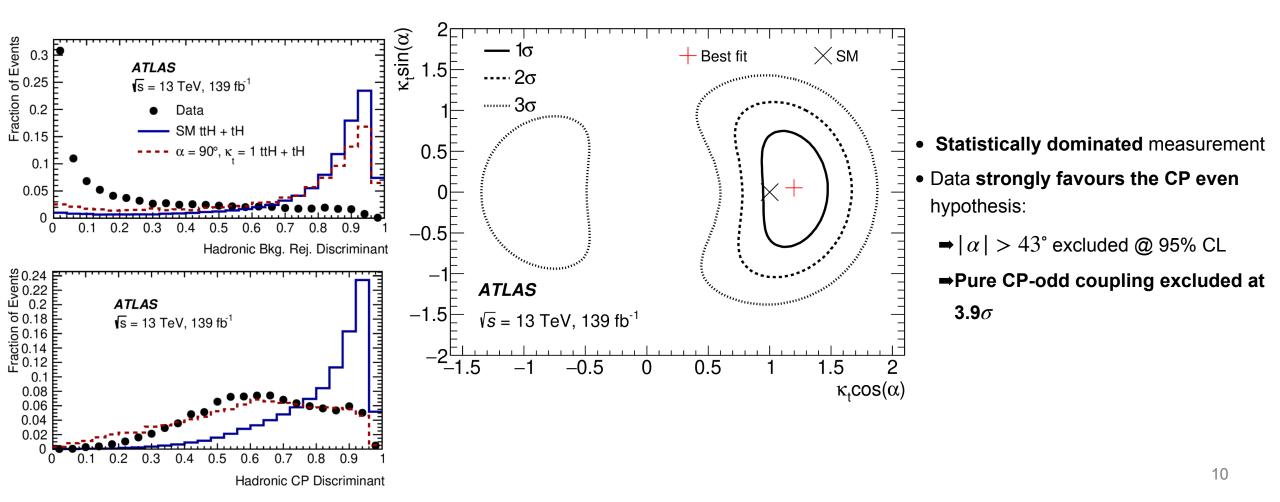
8

CP nature of top-Higgs interaction

- SM predicts the Higgs boson to be a CP-even particle ($J^{CP} = 0^{++}$, scalar)
- Signs of pure CP-odd or CP-mixed couplings to SM particles would hint at new physics beyond the SM
 Additional sources of CP violation (on top of CKM) needed to explain observed baryon asymmetry in the universe
- Effective Lagrangian describing top Yukawa coupling can be paramaterized as:

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$

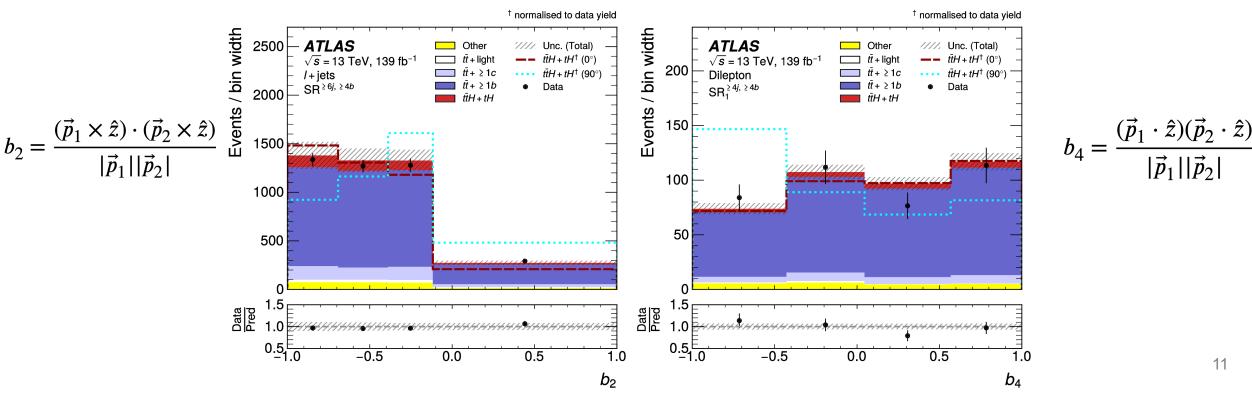
 $\bigstar k_t$: coupling modifier parameter (SM: $k_t = 1$) $\rightarrow k_t \neq 1$ leads to variations in the cross-section

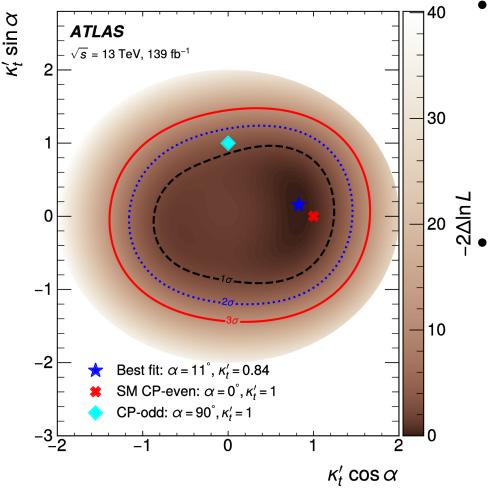

★ α : CP-mixing angle (SM: $\alpha = 0^{\circ}$; pure CP-odd: $\alpha = 90^{\circ}$) $\rightarrow \alpha \neq 0^{\circ}$ implies an admixture with pseudo-scalar coupling resulting in both cross-section and kinematics variations.

- CP properties of the top Yukawa coupling can be directly probed through $t\bar{t}H/tH$ processes
 - \clubsuit exploiting $H \rightarrow \gamma \gamma$ and $~H \rightarrow b \bar{b}$

CP properties: $t\bar{t}H/tH(H \rightarrow \gamma\gamma)$ w/ 139 fb⁻¹

PRL 125 (2020) 061802


- Sharing similarities w/ the STXS analysis e.g signal and background modelling, discriminant variable $m_{_{\gamma\gamma}}$
- Events categorisation using 2 BDTs: Background rejection BDT and CP BDT (CP-even vs CP-odd) → 20 categories


CP properties: $t\bar{t}H/tH(H \rightarrow b\bar{b})$ w/ 139 fb⁻¹

PLB 849 (2024) 138469

- Similar strategy to previous iteration of $t\bar{t}H(H \rightarrow b\bar{b})$ cross-section analysis with full Run 2 data <u>JHEP 06 (2022) 97</u>
 - \Rightarrow BDTs used for event reconstruction and event classification (optimised for SM $t\bar{t}H$)
 - \clubsuit Considering both $\,t\bar{t}H$ and tH as signals
- Dedicated CP sensitive observables are built relying on angular separation between reconstructed top quarks
 - ⇒ b2: enhanced for narrower azimuthal separation of top quarks in CP-odd case
 - ➡ b4: enhanced for top quarks in opposite directions and closer to the beamline
 - ✤ used as fitting observables in the signal regions

CP properties: $t\bar{t}H/tH(H \rightarrow b\bar{b})$ w/ 139 fb⁻¹

- Best fit values:
 - → CP-mixing angle $\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$
 - → coupling strength $k_t^{'} = 0.84^{+0.30}_{-0.46}$
 - ★ Compatible with both $\alpha = 0^{\circ}$ and $\alpha = 90^{\circ}$

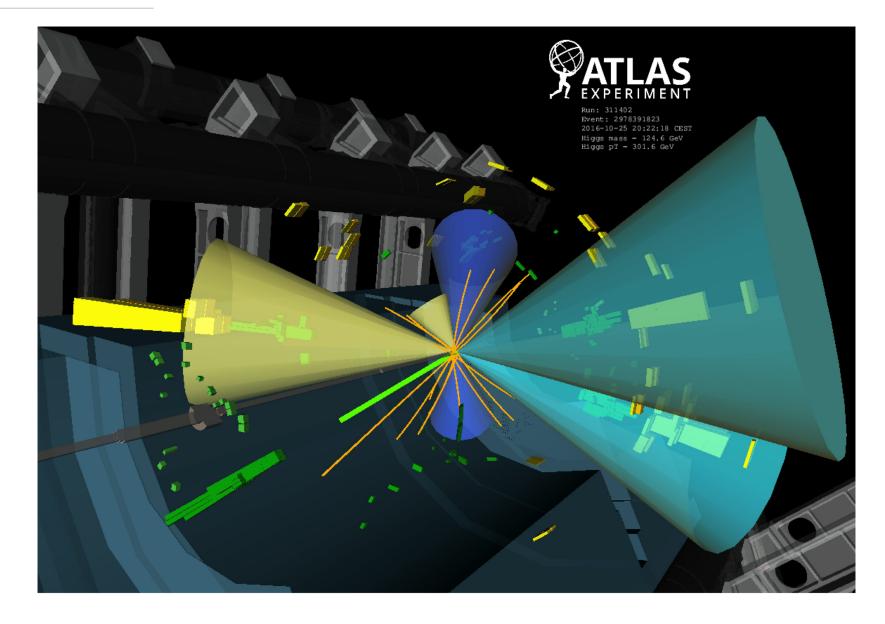
★Data prefers SM and disfavours CP-odd hypothesis at **1.2** σ significance.

- Sensitivity driven by the $t\bar{t} + \ge 1b$ modelling uncertainties:
 - \clubsuit Same as in previous round of $t\bar{t}H(H \rightarrow b\bar{b})$ analysis
 - ➡ would benefit greatly from the improved modelling

Can enhance CP measurement precision when combined with $\,H \to \gamma\gamma\,$ measurement

PLB 849 (2024) 138469

Summary

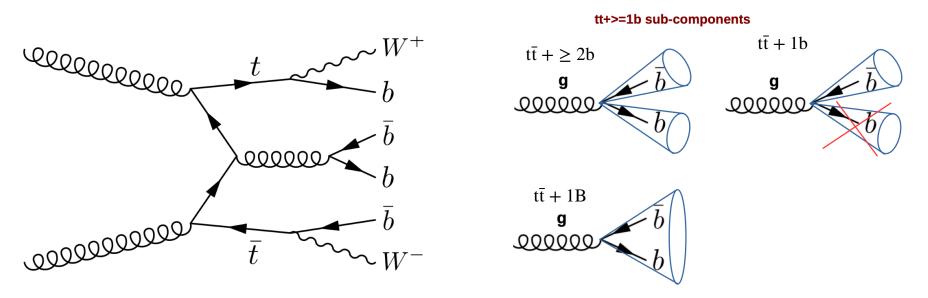

- An overview of the latest $t\bar{t}H/tH$ ATLAS measurements with full Run 2 data given
 - → targeting $H \rightarrow b\bar{b}, \gamma\gamma, ZZ^*, WW^*, \tau\tau$ decay modes with complex final states
 - ightarrow H ightarrow au au resonant leptonic decay with fully hadronic top decays covered in Enrique's talk
- Largest ever dataset available allowing to evolve from individual coupling measurements to the STXS approach
 - \Rightarrow detailed t $\bar{t}H$ measurements as a function of the Higgs boson p_T
- Several analyses also exploring the CP nature of the Higgs-top interaction: $H \to b \bar{b}, \gamma \gamma$
- All measurements are remarkably consistent with the predictions of the SM predictions
 - \Rightarrow some limited by statistics ($\gamma\gamma$) while others by the understanding of the background modelling ($b\bar{b}$, multilepton)
- With Run 3 and beyond an unprecedented amount of data awaits!
 - → would drive the precision of $t\bar{t}H/tH$ analyses even higher...stay tuned!

tīH	$H \rightarrow b\bar{b}$	$H \rightarrow \gamma \gamma$	$H \rightarrow WW^*, ZZ^*, \tau \tau$
$\mu_{t\bar{t}H}$	$0.81^{+0.20}_{-0.18}$	$0.89^{+0.32}_{-0.30}$	$0.58^{+0.36}_{-0.33}$
<i>α</i> (CP)	11°+52° _73°	$ \alpha > 43^{\circ}$ excl. @95 CL	_

Backup

Couplings/STXS: $t\bar{t}H(H \rightarrow b\bar{b})$ w/ 140 fb⁻¹

Couplings/STXS: $t\bar{t}H(H \rightarrow b\bar{b})$


Preselection

Jets		DL1r <i>b</i> -Ta @ 77 %	@ 85 %	# e/µ	# $ au_{ m had}$	# Boosted Higgs Candidates
≥3	≥ 2	_	≥3	2	0	n/a
≥5	\geq 3		_	1	≤ 1	-
≥4		≥2	≥ 4	1	≤1	≥1
	≥ 3 ≥ 5		$\geq 3 \geq 2 - 2 \leq -2 \leq 3 \leq 2 \leq -2 \leq 3 \leq 2 \leq -2 \leq 3 \leq -2 \leq -2$	$\geq 3 \geq 2 - \geq 3 \geq 3 = -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Chris Scheulen

$t\bar{t} + jets$ classification

- $t\bar{t} + jets$ events classified based on the flavour of additional non- $t\bar{t}$ jets: determined via matching particle jets to p_T >5 GeV b/c-hadrons with $\Delta R < 0.4$
- 4FS ttbb component split into 3 categories

- 5FS $t\bar{t}$ components classified into
 - $t\bar{t} + \ge 1c$: one or more non- $t\bar{t}$ jets matched to c-hadrons, no non- $t\bar{t}$ jets matched to b-hadrons
 - $t\bar{t} + light$: no non- $t\bar{t}$ jets matched to b/c-hadrons

tt + jets modeling

- Nominal $t\bar{t}bb$ 4FS sample generated based on the PowhegBoxRes+Pythia8 setup
- $t\bar{t} + \ge 1c$ and $t\bar{t} + light$ 5FS samples generated based on the PowhegBox+Pythia8 setup

Optimised ttbb setup w.r.t previous round

Parameter	previous value	new default value
PDF	NNPDF3.0 nnlo Nf4	NNPDF3.1 nnlo Nf4
Scale choice ^{<i>a b</i>}	$\mu_{\rm R}^{\rm def} = \sqrt[4]{\prod_{i=t,\bar{t},b,\bar{b}} E_{\rm T,i}}$	$\mu_{\rm R} = 0.5 \cdot \mu_{\rm R}^{\rm def}$ $\mu_{\rm F} = \mu_{\rm F}^{\rm def}$
	$\mu_{\rm R}^{\rm def} = \sqrt[4]{\prod_{i=t,\bar{t},b,\bar{b}} E_{\rm T,i}} \\ \mu_{\rm F}^{\rm def} = \frac{1}{2} [\sum_{i=t,\bar{t},b,\bar{b},j} E_{\rm T,i}]$	$\mu_{\rm F} = \mu_{\rm F}^{\rm def}$
h _{bzd}	2	5
h _{damp}	<i>H</i> _T / 2	<i>H</i> _T / 2
Decay handling	MadSpin	Powheg
Рутніа8 POWHEG: <i>pTdef</i>	2	1
PYTHIA8 SpaceShower:dipoleRecoil	off (global recoil)	off (global recoil)

ATL-PHYS-PUB-2022-006

tt + jets systematic model

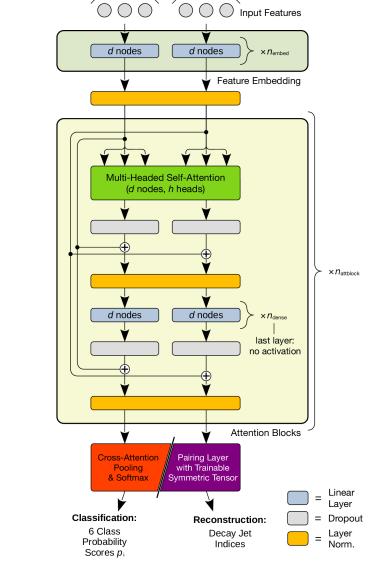
• $t\bar{t} + jets$ components normalisation free-floating in the fit (only inclusive $t\bar{t} + \ge 1b$ normalisation floating in previous round)

Systematic	ATLAS First Full Run 2	ATLAS Run 2 Legacy	
ME Scale	-	independent ME μ_R , μ_F variations	
ISR	Var3c and ME μ_R , μ_F variations	A14 tune Var3c variations	
FSR	PS FSR μ_R variations		
Parton Shower & Hadronisation	Powheg + Herwig7 alternative (5FS only)	Powheg + Herwig7 alternative (5FS and 4FS)	
NLO Matching	MG5_aMC@NLO + Pythia8 (5FS only)	PP8 p_{T} -hard = 1 alternative (5FS and 4FS)	
ISR Recoil	_	PP8 dipole recoil alternative (tt + ≥ 1b only)	Chris Scheulen
h _{damp} variation	_	h _{damp} up-variation alternative (tt + c/light only)	

Transformers architecture (classification/reconstruction)

Re-scaled to $\mu = 0, \sigma = 1$.

None.


Feature	Description	Feature Transformations
p_x	Object momentum in x-direction.	Re-scaled to $\mu = 0, \sigma = 1$.
p_y	Object momentum in y-direction.	Re-scaled to $\mu = 0, \sigma = 1$.
p_z	Object momentum in z-direction.	Re-scaled to $\mu = 0, \sigma = 1$.
energy	Object energy.	Re-scaled to $\mu = 0, \sigma = 1$.
p_{T}	Object transverse momentum.	Re-scaled to $\mu = 0, \sigma = 1$.
mass	Object mass.	Re-scaled to $\mu = 0, \sigma = 1$.
η	Object pseudo-rapidity.	Re-scaled to $\mu = 0, \sigma = 1$.
ϕ	Object azimuthal angle.	Re-scaled to $\mu = 0, \sigma = 1$.
$\cos\phi$	Sine of object azimuthal angle.	Re-scaled to $\mu = 0, \sigma = 1$.
$\sin\phi$	Cosine of object azimuthal angle.	Re-scaled to $\mu = 0, \sigma = 1$.
PCBT bin	DL1r pseudo-continuous b-tagging bin assigned to jets in the	None.
	following manner. Set to 0 for leptons and $E_{\rm T}^{\rm miss}$.	
	feature = $\begin{cases} 1, & \text{if un-tagged} \\ 2, & \text{if tagged at } [85\%, 77\%) \\ 3, & \text{if tagged at } [77\%, 70\%) \\ 4, & \text{if tagged at } [70\%, 60\%) \\ 5, & \text{if tagged at } 60\%. \end{cases}$	
	feature = 3 if tagged at $[77\%, 70\%)$	
	$\frac{1}{4} = \frac{1}{5}, \text{if tagged at } [70\%, 70\%]$	
	4, if tagged at $[70\%, 60\%)$	
	(5, if tagged at 60%.	
lepton type	Lepton type of input objects. Set to 1 for electrons, 2 for muons, and 0 for jets and E_{T}^{miss} .	None.

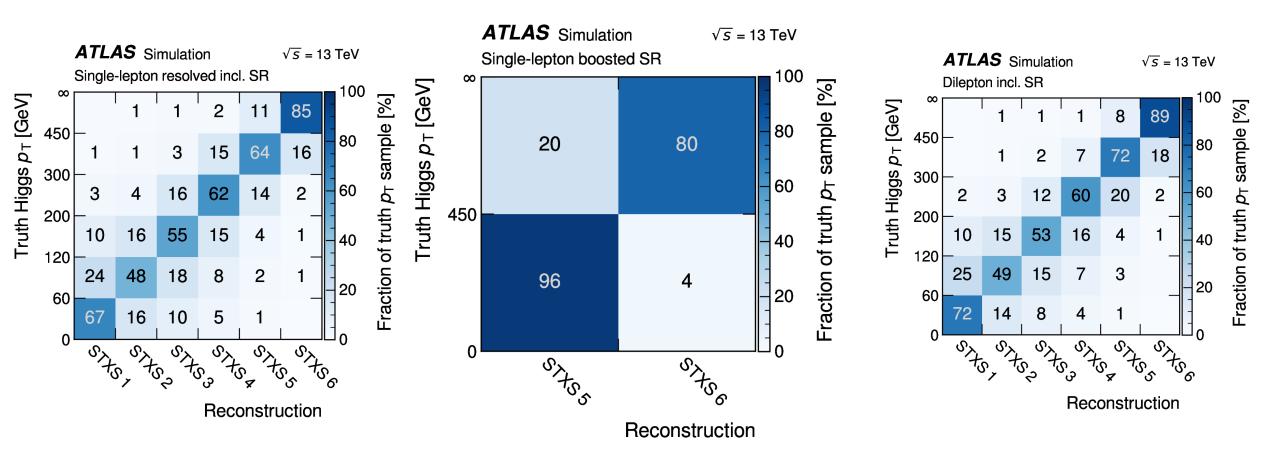
Charge of lepton objects in units of e. Set to 0 for jets and $E_{\rm T}^{\rm miss}$.

Whether input object is E_T^{miss} (value of 1) or not (value of 0).

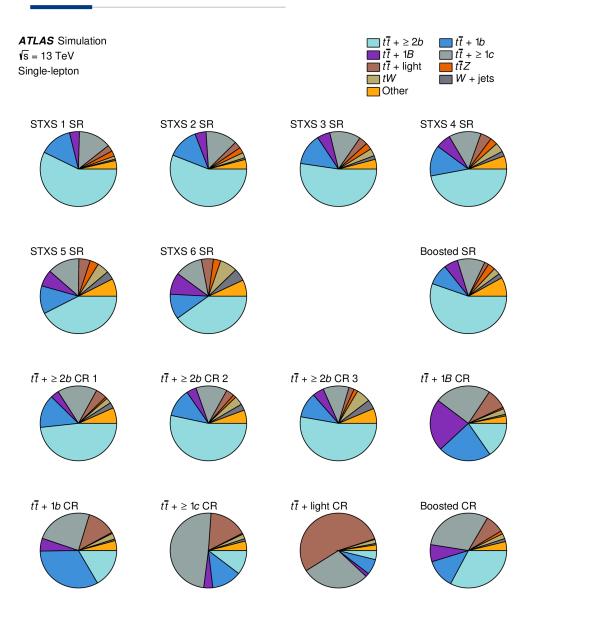
lepton charge

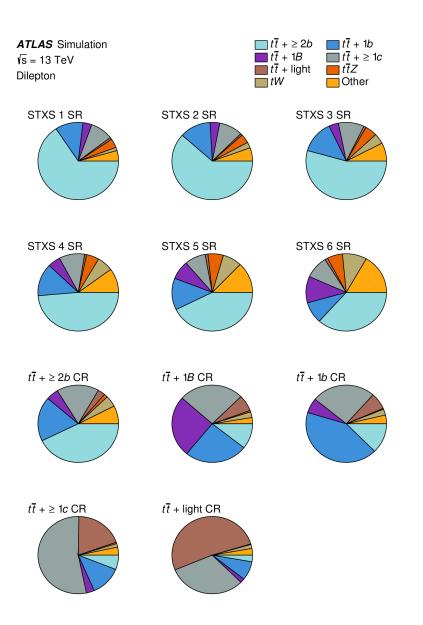
 $E_{\rm T}^{\rm miss}$ flag

21

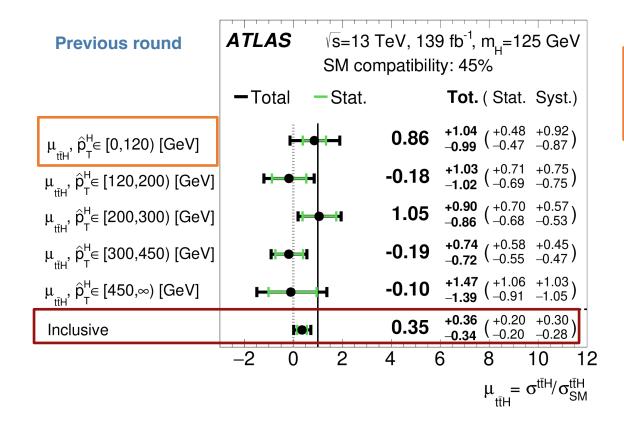

nobj Input Objects

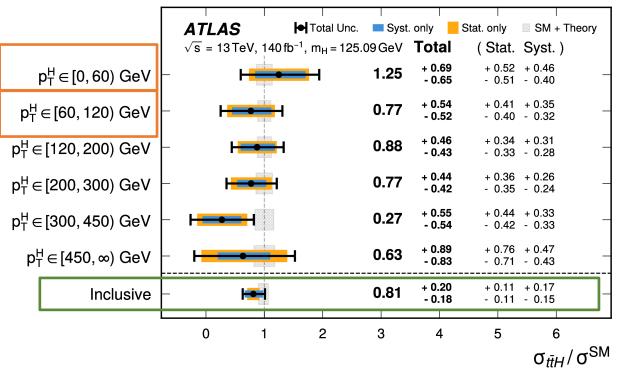
 n_{feat}


 n_{feat}

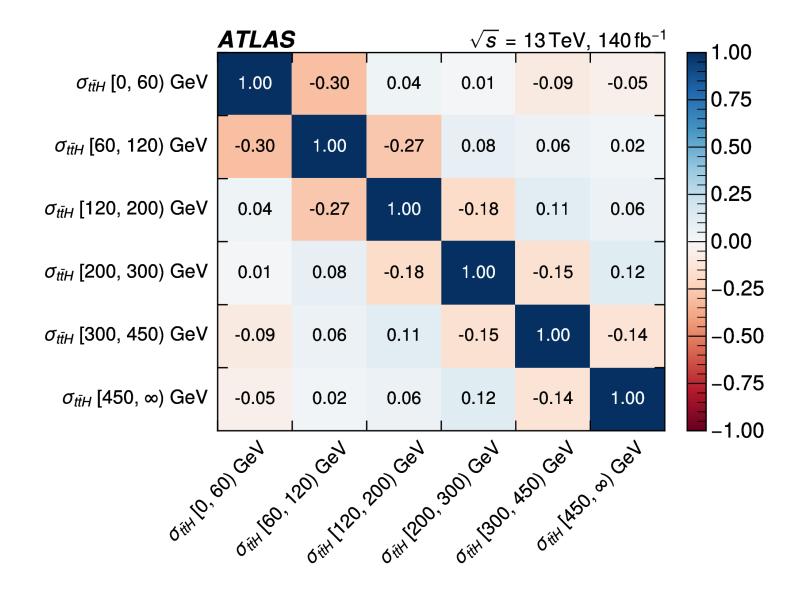

Chris Scheulen

STXS migration matrices




Background composition

STXS measurements comparison w/ previous round



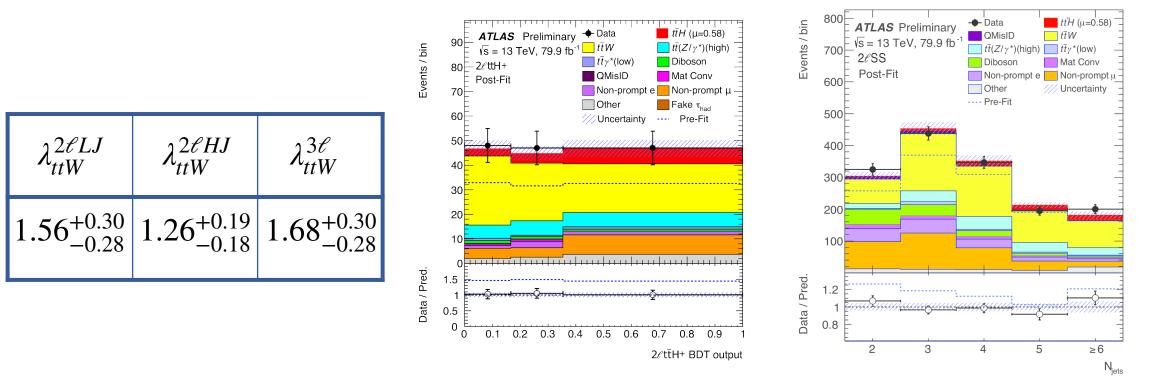
24

Background normalisation

Normalisation factor	$t\bar{t} + \text{light}$	$t\bar{t} + \ge 1c$	$t\bar{t} + 1b$	$t\bar{t} + 1B$	$t\bar{t} + \ge 2b$
Single-lepton	$0.78^{+0.08}_{-0.08}$	$1.51^{+0.19}_{-0.18}$	$1.06^{+0.10}_{-0.10}$	$1.15^{+0.15}_{-0.14}$	$0.94^{+0.08}_{-0.08}$
Dilepton	$0.88^{+0.11}_{-0.10}$	$1.36^{+0.10}_{-0.10}$	$1.24^{+0.09}_{-0.09}$	0.14	

STXS correlations

Systematics grouped impact


Uncertainty source	$\Delta \sigma_{t\bar{t}H}$ (fb)		$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ (%)		
Process modelling					
$t\bar{t}H$ modelling					
$t\bar{t}H$ radiation	+35	-21	+9	-5	
$t\bar{t}H$ parton shower	+32	-19	+8	-5	
$t\bar{t}H$ matching	< 0.1	-0.3	< 0.1	-0.1	
$t\bar{t}H$ theory	+25	-17	+6	-4	
$t\bar{t} + \ge 1b$ modelling					
$t\bar{t} + \ge 1b$ radiation	±.	31	:	± 8	
$t\bar{t} + \ge 1b$ parton shower	± 29		±7		
$t\bar{t} + \ge 1b$ matching	±19		± 5		
$t\bar{t} + \ge 1c$ modelling	± 18		± 4		
$t\bar{t}$ + light modelling	± 5		:	±1	
tW modelling	±16		:	± 4	
Minor background modelling	±19		± 5		
Flavour tagging	±36		± 9		
Jet modelling	± 22		± 5		
Monte-Carlo statistics	±17		± 4		
Other instrumental	±	10	:	±2	
Total systematic uncertainty	+85	-75	+21	-18	
Normalisation factors	±21		±5		
Total statistical uncertainty	±:	54	±	-13	
Total uncertainty	+101	-92	+25	-22	

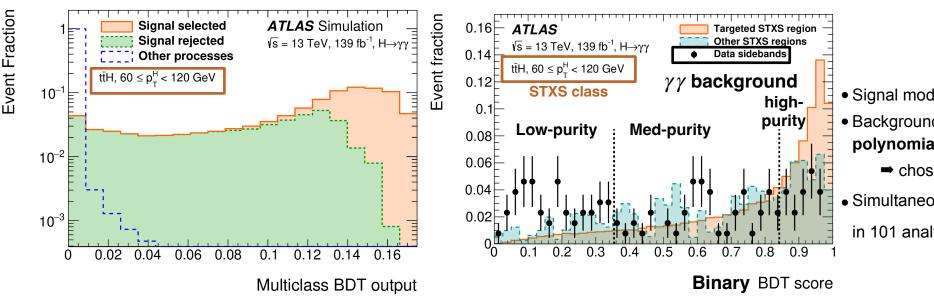
Couplings: $t\bar{t}H(H \rightarrow WW^*, ZZ^*, \tau\tau)$ w/ 80 fb⁻¹

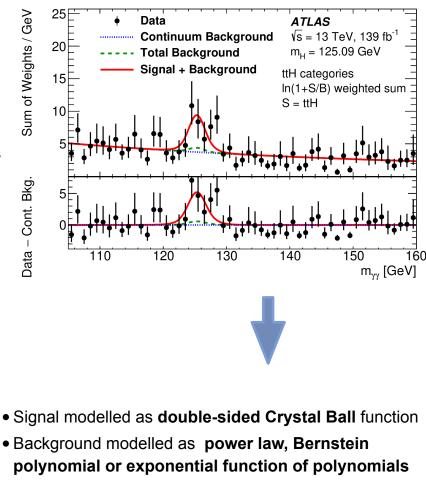
Analysis strategy

- Relatively large branching ratios and low yet challenging backgrounds
- Targeting events with leptons in the H decay final states and leptonic $t\bar{t}$ decays
 - ⇒ 6 channels based on number, flavour and charge of lepton candidates: $2\ell SS$, 3ℓ , 4ℓ , $2\ell SS + 1\tau_{had}$, $3\ell + 1\tau_{had}$ and $1\ell + 2\tau_{had}$
 - → MVA discriminants used in the $2\ell SS$, 3ℓ , 4ℓ and $1\ell + 2\tau_{had}$ for event classification (signal and control regions)

* also used in signal extraction fit for signal regions (except for 4ℓ)

State-of-the-art ttW predictions


NNLO [15]	FxFx [27]		
$\begin{array}{ c c c }\hline & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		Order	$\sigma~\mathrm{[fb]}$
LO QCD: $\alpha_{\rm s}^2 \alpha$	$420 \ ^{+106}_{-79}$		
NLO QCD: $+ \alpha_s^3 \alpha$	$622 \ _{-72}^{+79}$	2^{+79}_{-72} $t\bar{t}W$ +0,1,2j@NLC	
NNLO QCD: $+ \alpha_s^4 \alpha$	$711 \; {}^{+35}_{-46} \pm 14$		
NLO EWK: $+\alpha_{s}\alpha^{3} + \alpha_{s}^{2}\alpha^{2} + \alpha^{4}$	$745\pm50\pm13$	$+ \alpha_{\rm s} \alpha^3$	$739 \ ^{+75}_{-81}$
$-\frac{1}{10000000000000000000000000000000000$	$140 \pm 00 \pm 10$	$+ \alpha_{ m s}^2 \alpha^2 + \alpha^4$	$722 \ ^{+70}_{-78}$


Table 1. Summary of theoretical predictions with NNLO precision in the strong coupling [15] and using FxFx NLO multijet merging [27], both including NLO EWK corrections. The first uncertainty is due to variations of the chosen renormalisation and factorisation scales. Where there is a second contribution to the uncertainty, this corresponds to the approximation used in the 2-loop calculation. Uncertainties due to the choice of PDF and α_s are omitted.

Couplings/STXS: $t\bar{t}H(H \rightarrow \gamma\gamma)$ w/ 139 fb⁻¹

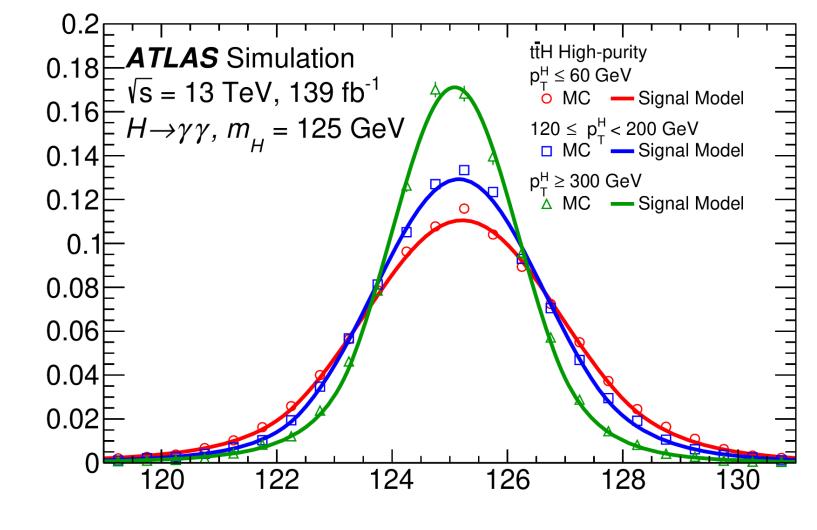
Analysis strategy

- Small BR but clear signal peak and low background level
 - ➡ excellent performance of **photon reconstruction/identification** in ATLAS.
- Event categorisation using a Multiclass BDT classifying signal events into 45 different STXS analysis regions
 - \blacksquare 7 STXS regions dedicated to $t\bar{t}H/tH$ (5 Higgs boson p_T regions for $t\bar{t}H,$ tWH, tHqb)
- \bullet Each STXS class is further subdivided into categories based on $\$ binary MVA classifiers
 - → $t\bar{t}H/tWH$: binary BDT separating signal from continuum $\gamma\gamma$ background
 - → tHqb: two-stages NN binary classification to reduce background and separate $k_t = 1$ vs $k_t = -1$

chosen based on a spurious signal test

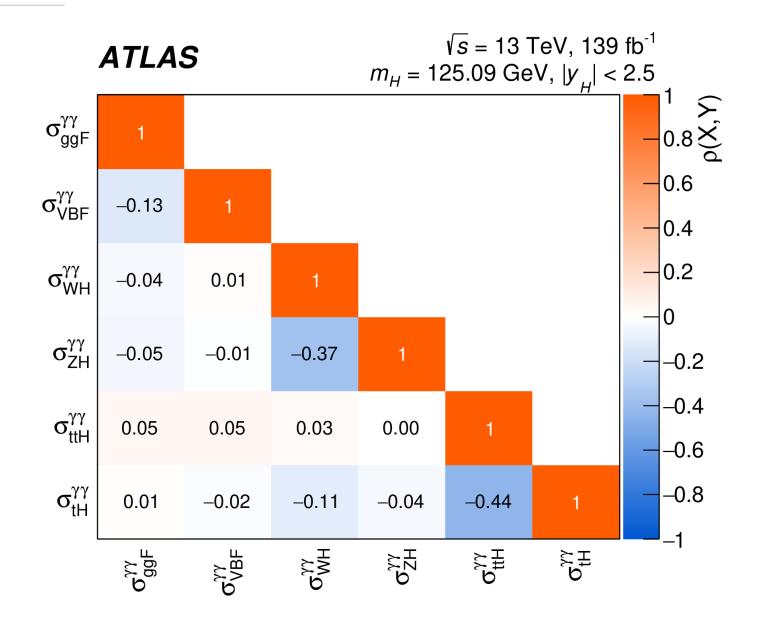
• Simultaneous Maximum Likelihood fit to $m_{\gamma\gamma}$ performed in 101 analysis categories (13 dedicated to $t\bar{t}H/tH$)

Multiclass BDT input features


 $\eta_{\gamma_1}, \eta_{\gamma_2}, p_{\mathrm{T}}^{\gamma\gamma}, y_{\gamma\gamma},$ $p_{\mathrm{T}, j i}^{\dagger}, m_{j j}, \text{ and } \Delta y, \Delta \phi, \Delta \eta \text{ between } j_1 \text{ and } j_2,$ $p_{\mathrm{T},\gamma\gamma i_{1}}, m_{\gamma\gamma i_{1}}, p_{\mathrm{T},\gamma\gamma i_{j}}^{\dagger}, m_{\gamma\gamma i_{j}}$ $\Delta y, \Delta \phi$ between the $\gamma \gamma$ and *j j* systems, minimum ΔR between jets and photons, invariant mass of the system comprising all jets in the event, dilepton $p_{\rm T}$, di-*e* or di- μ invariant mass (leptons are required to be oppositely charged), $E_{\rm T}^{\rm miss}$, $p_{\rm T}$ and transverse mass of the lepton + $E_{\rm T}^{\rm miss}$ system, $p_{\rm T}, \eta, \phi$ of top-quark candidates, $m_{t_1t_2}$ Number of jets[†], of central jets ($|\eta| < 2.5$)[†], of *b*-jets[†] and of leptons, $p_{\rm T}$ of the highest- $p_{\rm T}$ jet, scalar sum of the $p_{\rm T}$ of all jets, scalar sum of the transverse energies of all particles ($\sum E_T$), E_T^{miss} significance, $\left| E_{\rm T}^{\rm miss} - E_{\rm T}^{\rm miss} (\text{primary vertex with the highest } \sum p_{\rm T,track}^2) \right| > 30 \,\text{GeV}$ Top reconstruction BDT of the top-quark candidates, $\Delta R(W, b)$ of t_2 , $\eta_{i_F}, m_{\gamma\gamma i_F}$ Average number of interactions per bunch crossing.

Binary classifiers input features

STXS classes	Variables		
Individual STXS classes from $gg \rightarrow H$ $qq' \rightarrow Hqq'$ $qq \rightarrow H\ell\nu$ $pp \rightarrow H\ell\ell$ $pp \rightarrow H\nu\bar{\nu}$	All multiclass BDT variables, $p_{T}^{\gamma\gamma}$ projected to the thrust axis of the $\gamma\gamma$ system $(p_{Tt}^{\gamma\gamma})$, $\Delta\eta_{\gamma\gamma}, \eta^{Zepp} = \frac{\eta_{\gamma\gamma} - \eta_{jj}}{2},$ $\phi_{\gamma\gamma}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\gamma\gamma} }{2}\right)\sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\gamma\gamma}}{2}\right)},$ $\cos\theta_{\gamma\gamma}^{*} = \left \frac{(E^{\gamma_{1}} + p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} - p_{z}^{\gamma_{2}}) - (E^{\gamma_{1}} - p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} + p_{z}^{\gamma_{2}})}{m_{\gamma\gamma} + \sqrt{m_{\gamma\gamma}^{2} + (p_{T}^{\gamma\gamma})^{2}}}\right $ Number of electrons and muons.		
all <i>tīH</i> and <i>tHW</i> STXS classes combined	$p_{\rm T}, \eta, \phi \text{ of } \gamma_1 \text{ and } \gamma_2,$ $p_{\rm T}, \eta, \phi \text{ and } b$ -tagging scores of the six highest- $p_{\rm T}$ jets, $E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$ significance, $E_{\rm T}^{\rm miss}$ azimuthal angle, Top reconstruction BDT scores of the top-quark candidates, $p_{\rm T}, \eta, \phi$ of the two highest- $p_{\rm T}$ leptons.		
tHqb	$p_{T}^{\gamma\gamma}/m_{\gamma\gamma}, \eta_{\gamma\gamma},$ $p_{T}, \text{ invariant mass, BDT score and } \Delta R(W, b) \text{ of } t_{1},$ $p_{T}, \eta \text{ of } t_{2},$ $p_{T}, \eta \text{ of } j_{F},$ Angular variables: $\Delta \eta_{\gamma\gamma t_{1}}, \Delta \theta_{\gamma\gamma t_{2}}, \Delta \theta_{t_{1}j_{F}}, \Delta \theta_{t_{2}j_{F}}, \Delta \theta_{\gamma\gamma j_{F}}$ Invariant mass variables: $m_{\gamma\gamma j_{F}}, m_{t_{1}j_{F}}, m_{t_{2}j_{F}}, m_{\gamma\gamma t_{1}}$ Number of jets with $p_{T} > 25 \text{ GeV}$, Number of b-jets with $p_{T} > 25 \text{ GeV}^{*};$ Number of leptons [*] , E_{T}^{miss} significance [*]		


Signal modeling

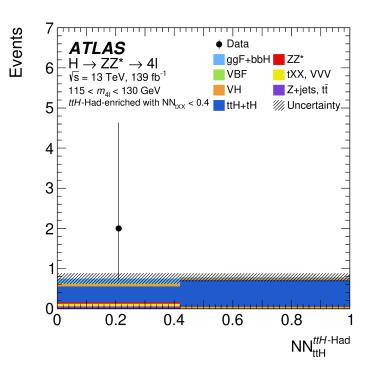
1/N dN/d $m_{\gamma\gamma}$ / 0.5 GeV

 $m_{\gamma\gamma}$ [GeV]

STXS correlations

κ parametrisation

Table 1: Parameterization of Higgs boson production cross-sections σ_i , the partial decay widths $\Gamma_{\gamma\gamma}$, Γ_{gg} and $\Gamma_{Z\gamma}$ of the $H \rightarrow \gamma\gamma$, $H \rightarrow gg$ and $H \rightarrow Z\gamma$ decays, respectively, and the total width Γ_H , normalized to their SM values, as functions of the coupling-strength modifiers κ . The coefficients for $\sigma(tHW)$ and $\sigma(tHqb)$ include acceptance effects that differ between analysis categories as described in the text. Other coefficients are derived following the methodology in Refs. .

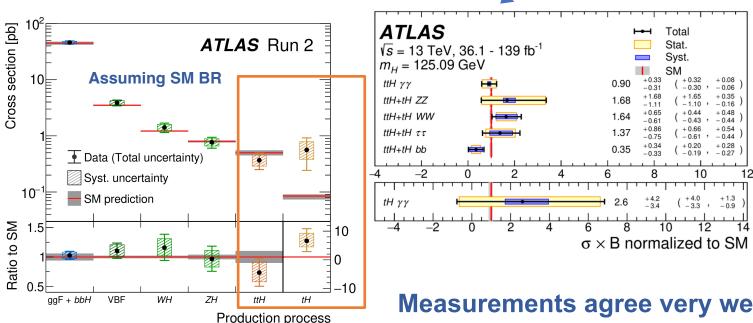

Production	Main	Effective	Resolved modifier		
cross-section	interference	modifier			
$\sigma(ggF)$	t–b	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$		
$\sigma(\mathrm{VBF})$	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$		
$\sigma(q\bar{q} \rightarrow ZH)$	-	-	κ_Z^2		
$\sigma(gg \to ZH)$	t–Z	-	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$		
$O(gg \rightarrow ZII)$	<i>i–</i> 2		$-0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$		
$\sigma(WH)$	-	-	κ_W^2		
$\sigma(t\bar{t}H)$	-	-	κ_t^2		
$\sigma(tHW)$	t-W	-	$A \kappa_t^2 + B \kappa_W^2 + C \kappa_t \kappa_W$, category-dependent		
$\sigma(tHqb)$	t-W	-	$A \kappa_t^2 + B \kappa_W^2 + C \kappa_t \kappa_W$, category-dependent		
$\sigma(b\bar{b}H)$	-	-	κ_b^2		
Partial and total	Partial and total decay widths				
Γ _{γγ}	t-W	κ_{γ}^2	$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t + 0.009 \kappa_W \kappa_\tau$		
			$+ 0.008 \kappa_W \kappa_b - 0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$		
Γ_{gg}	t–b	κ_g^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$		
$\Gamma_{Z\gamma}$	t-W		$1.118 \kappa_W^2 + 0.004 \kappa_t^2 - 0.125 \kappa_W \kappa_t + 0.003 \kappa_W \kappa_b$		
			$0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.063 \kappa_\tau^2$		
			+ $0.026 \kappa_Z^2$ + $0.029 \kappa_c^2$ + $0.0023 \kappa_\gamma^2$		
Γ_H	-	κ_H^2	+ $0.0004 \kappa_s^2$ + $0.00022 \kappa_\mu^2$		
			+ 0.082 $(\Gamma_{gg}/\Gamma_{gg}^{\rm SM})$		
			+ 0.0015 $(\Gamma_{Z\gamma}/\Gamma_{Z\gamma}^{\rm SM})$		

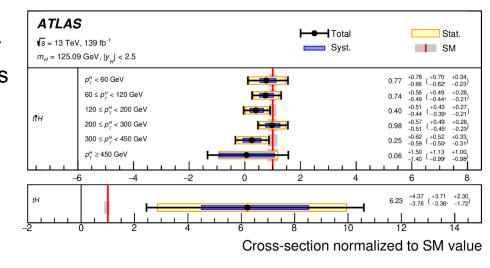
Couplings/STXS: $t\overline{t}H(H \rightarrow ZZ^*)$ res. w/ 139 fb⁻¹

Couplings/STXS: $t\bar{t}H(H \rightarrow \tau\tau, ZZ^*)$ w/ 139 fb⁻¹ <u>EPJC 80 (2020) 957</u>

• $t\bar{t}H$ production also explored in **resonant** leptonic Higgs decays (orthogonal to $t\bar{t}H$ multilepton)

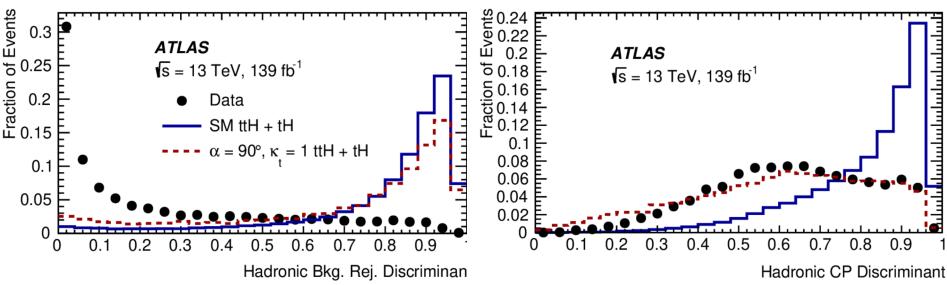
- → very good separation from other production modes achieved with (b)-jets requirements
- ➡ Low signal yields expected
- $\bullet t\bar{t}H(ZZ^*\to 4\ell')$ targets leptonic and fully hadronic top quarks decays
 - NN used to separate signal from tt
 V and ggF Higgs production in the hadronic channel
 Also used as observable in the fit
 - → Results: $\mu_{t\bar{t}H} = 1.6^{+1.7}_{-1.1}$ (stat) $^{+0.3}_{-0.2}$ (syst)
 - → Largely statistically limited and to date less precise than other production modes for $H \rightarrow ZZ^* \rightarrow 4\ell$ final state.


$t\bar{t}H$ combination

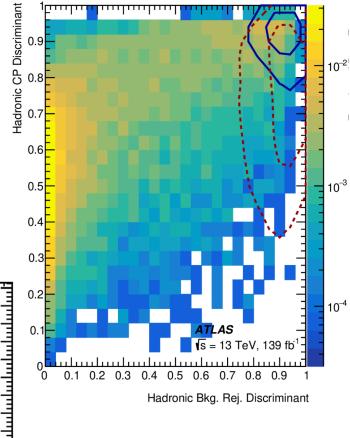

ttH combination

Nature 607 52 (2022)

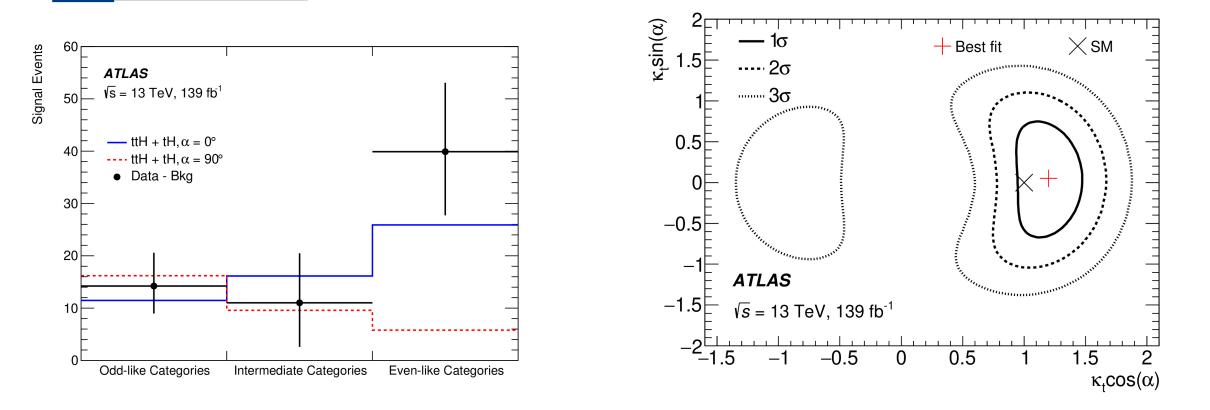
- Considering individual measurements targeting the various decay modes
- → Including $t\bar{t}H$ multilepton measurement from PRD 97 (2018) 072003
- Splitting $t\bar{t}H$ measurement for different decay channels
 - $\Rightarrow \gamma \gamma$, ZZ*, WW*, $\tau \tau$, bb
 - \Rightarrow free floating $\sigma_{t\bar{t}H}(\sigma_{t\bar{t}H+tH}) \times BR_i$


- Combined measurements for six Higgs boson p_{T}
 - \Rightarrow Low p_T statistically limited (H $\rightarrow \gamma \gamma$)
 - \Rightarrow Higher p_T systematically dominated

Measurements agree very well with the SM predictions


CP properties: $t\bar{t}H/tH(H \rightarrow \gamma\gamma)$ w/ 139 fb⁻¹

CP properties: $t\bar{t}H/tH(H \rightarrow \gamma\gamma)$ w/ 139 fb⁻¹


- Sharing similarities with the STXS analysis e.g signal and background modelling, discriminant variable $m_{\gamma\gamma}$
- Events split into two $t\bar{t}H$ -enriched channels: Lep ($\geq 1\ell$: leptonic tops), Had (0ℓ : hadronic tops)
- Events further categorised in each channel using 2 BDTs:
 - ⇒ Background rejection BDT: $t\bar{t}H$ vs main backgrounds ($\gamma\gamma$ + jets, $t\bar{t}$ + $\gamma\gamma$)
 - ➡ CP BDT: separate CP-even and CP-odd in the signal
- 20 categories defined in 2D BDT space optimising $t\bar{t}H$ significance and CP-odd vs CP-even separation
 - ➡ 12 hadronic and 8 leptonic

PRL 125 (2020) 061802

CP properties: $t\bar{t}H/tH(H \rightarrow \gamma\gamma)$ w/ 139 fb⁻¹

- Simultaneous maximum likelihood fit in all categories to $m_{_{\gamma\gamma}}$
 - → Higgs couplings to photons and gluons constrained by the Run 2 combination results in Phys. Rev. D 101 (2020) 012002
 - Statistically dominated measurement
- Data strongly favours the CP even hypothesis:
 - ⇒ Exclusion of $|\alpha| > 43^{\circ}$ @ 95% CL
 - ➡ Pure CP-odd coupling excluded at 3.9 σ

CP properties: $t\bar{t}H/tH(H \rightarrow bb)$ w/ 139 fb⁻¹

CP properties: $t\bar{t}H/tH(H\to b\bar{b})$ w/ 139 fb $^{-1}$

- Dedicated CP sensitive observables are built relying on angular separation between reconstructed top quarks
 - ➡ b2: enhanced for narrower azimuthal separation of top quarks in CP-odd case
 - ➡ b4: enhanced for top quarks in opposite directions and closer to the beamline

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1| |\vec{p}_2|} \qquad \qquad b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1| |\vec{p}_2|}$$

- \vec{p}_i with i = 1,2 correspond to the three-vectors of the two top quarks, \hat{z} : unit vector in the direction of the beam line, defines the z-axis.
- b2 calculation is performed in ttH rest frame to enhance discrimination

Input features for reconstruction BDTs

Single lepton

Variables
Topological information from $t\bar{t}$
Mass of top_{lep}
Mass of top_{had}
Mass of $W_{\rm had}$
Mass of $W_{\rm had}$ and b from $top_{\rm lep}$
Mass of W_{lep} and b from top_{had}
$\Delta R(W_{\rm had}, b {\rm from top_{had}})$
$\Delta R(W_{\rm had}, b \text{ from top}_{\rm lep})$
$\Delta R(\ell, b \text{ from top}_{\text{lep}})$
$\Delta R(\ell, b \text{ from top}_{had})$
$\Delta R(b \text{ from top}_{\text{lep}}, b \text{ from top}_{\text{had}})$
$\Delta R(q_1 \text{ from } W_{ ext{had}}, q_2 \text{ from } W_{ ext{had}})$
$\Delta R(b \text{ from } t_{ ext{had}}, q_1 \text{ from } W_{ ext{had}})$
$\Delta R(b \text{ from } t_{\text{had}}, q_2 \text{ from } W_{\text{had}})$
Min. $\Delta R(b \text{ from top}_{had}, q_i \text{ from } W_{had})$
$\Delta R(\text{lep, } b \text{ from top}_{\text{lep}}) - \text{min. } \Delta R(b \text{ from top}_{\text{had}}, q_i \text{ from } W_{\text{had}})$

Topological information from the Higgs boson candidate

Mass of Higgs

Mass of Higgs and q_1 from W_{had} $\Delta R(b_1 \text{ from Higgs}, b_2 \text{ from Higgs})$ $\Delta R(b_1 \text{ from Higgs, lepton})$

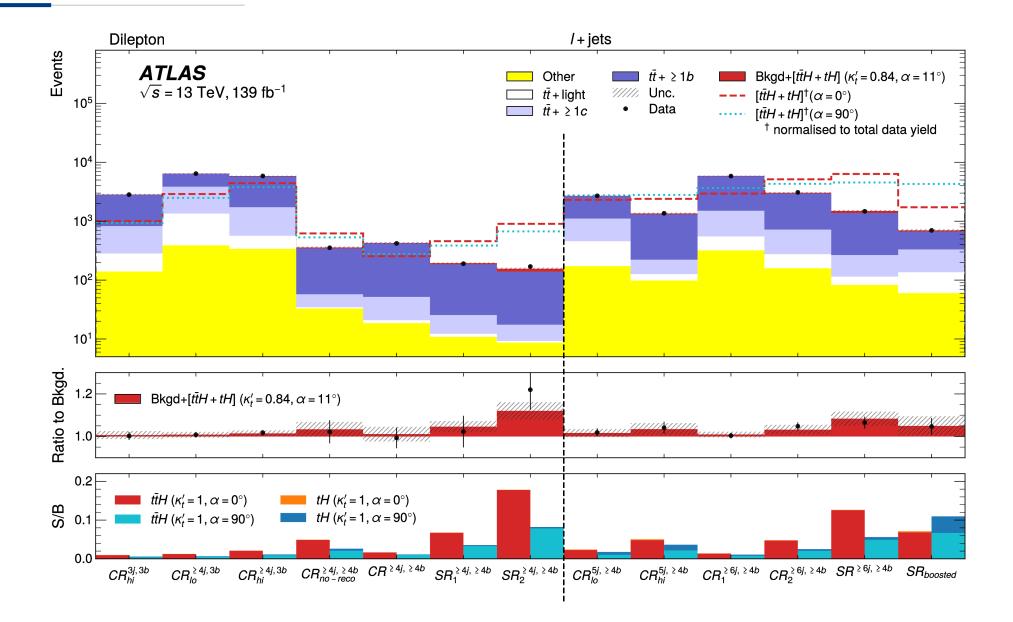
Dilepton lepton

Variables	BDT w/ Higgs	BDT w/o Higgs
Topological information from $t\bar{t}$		
Mass of top	\checkmark	\checkmark
Mass of anti-top	\checkmark	\checkmark
Mass difference between top and anti-top	\checkmark	\checkmark
$\Delta R(\ell, b)$ from top	\checkmark	\checkmark
$\Delta R(\ell, b)$ from anti-top	\checkmark	\checkmark
$-\Delta R(\ell, b)$ from top $-\Delta R(\ell, b)$ from anti-top-	_	\checkmark
$\Delta R(b \text{ from top}, b \text{ from anti-top})$	\checkmark	_
$\Delta \phi(b \text{ from top}, b \text{ from anti-top})$	_	\checkmark
$p_{\rm T}~b$ from top	_	\checkmark
$p_{\rm T}~b$ from anti-top	_	\checkmark
Min. $\Delta \eta(\ell, b \text{ from top or anti-top})$	_	\checkmark
Topological information from the Higgs boson can	didate	
Max. ΔR (Higgs, b from top or anti-top)	\checkmark	_
Mass of Higgs	\checkmark	_
$\Delta R({ m Higgs},tar{t})$	\checkmark	_

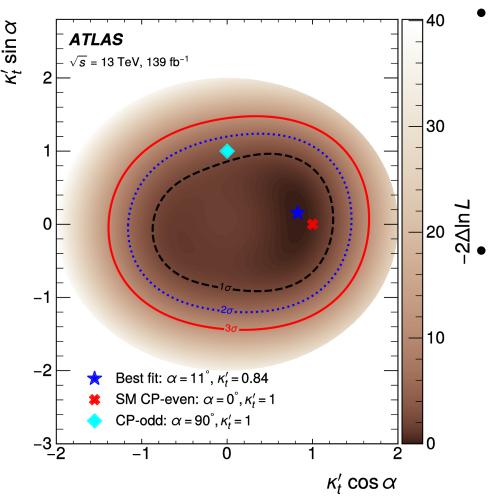
 \checkmark

 $\Delta R(b_1 \text{ from Higgs}, b_2 \text{ from Higgs})$

Input features for classification BDTs


Single lepton

Dilepton lepton


	enigie iepten			
Variable	Definition		Variable	Defi
General kinem	natic variables			2 01
$\Delta R_{bb}^{\rm avg}$	Average ΔR for all <i>b</i> -tagged jet pairs		General kinem	atic v
$\Delta R_{bb}^{\max p_{\rm T}}$	ΔR between the two $b\text{-tagged}$ jets with the largest vector sum p_{T}		min	
$\Delta\eta_{jj}^{\rm max}$	Maximum $\Delta \eta$ between any two jets		$m_{bb}^{ m mm}$	Min
$m_{bb}^{\min \ \Delta R}$	Mass of the combination of two b-tagged jets with the smallest Δh	R	$\min \Delta R$	т.,
$N_{bb}^{ m Higgs~30}$	Number of b -tagged jet pairs with invariant mass within 30 GeV of the Higgs boson mass	of		Inva
Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tenso [Phys. Rev. D 48 (1993) R3953] built with all jets	r	$m_{jj}^{\max p_{\mathrm{T}}}$	Inva
H_1	Second Fox–Wolfram moment computed using all jets and the leptor	n	$m_{bb}^{\max p_{\mathrm{T}}}$	Inva
Variables from	n reconstruction BDT			
BDT output	Output of the reconstruction BDT	†	$\Delta\eta_{bb}^{ m avg}$	Ave
$m_{bb}^{\rm Higgs}$	Higgs candidate mass		-Higgs 30	Nur
$m_{H,b_{ m lep \ top}}$	Mass of Higgs candidate and b -jet from leptonic top candidate		$N_{bb}^{ m Higgs~30}$	30 (
$\Delta R_{bb}^{\rm Higgs}$	ΔR between $b\text{-jets}$ from the Higgs candidate			
$\Delta R_{H,tar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	†	Variables from	reco
$\Delta R_{H,{\rm lep \ top}}$	ΔR between Higgs candidate and leptonic top candidate			Out
	likelihood calculations		BDT outputs	sele
LHD	Likelihood discriminant		Higgs	
Variables from	h b-tagging		m_{bb}^{mggs}	Hig
$w^{\rm Higgs}_{b\text{-}{\rm tag}}$	Sum of b -tagging discriminants of jets from best Higgs candidat from the reconstruction BDT	e	$\Delta R_{H,tar{t}}$	ΔR
$B_{ m jet}^3$	$3^{\rm rd}$ largest jet <i>b</i> -tagging discriminant		A pmin	٦./:
$B_{ m jet}^4$	4^{th} largest jet <i>b</i> -tagging discriminant		$\Delta R_{H,\ell}$	Mir
$B_{ m jet}^5$	5^{th} largest jet <i>b</i> -tagging discriminant		$\Delta R_{H,b}^{\min}$	Min

Variable	Definition				
General kinematic variables					
m_{bb}^{\min}	Minimum invariant mass of a <i>b</i> -tagged jet pair				
$m_{bb}^{\min \ \Delta R}$	Invariant mass of the <i>b</i> -tagged jet pair with minimum ΔR				
$m_{jj}^{\max p_{\mathrm{T}}}$	Invariant mass of the jet pair with maximum $p_{\rm T}$				
$m_{bb}^{\max p_{\mathrm{T}}}$	Invariant mass of the <i>b</i> -tagged jet pair with maximum $p_{\rm T}$				
$\Delta \eta_{bb}^{ m avg}$	Average $\Delta \eta$ for all <i>b</i> -tagged jet pairs				
$N_{bb}^{\text{Higgs } 30}$	Number of <i>b</i> -tagged jet pairs with invariant mass within 30 GeV of the Higgs boson mass				
Variables from	reconstruction BDT				
BDT outputs	Output of the reco. BDT w/ Higgs info. for the combination selected by the reco. BDTs w/ or w/o Higgs info.	+			
$m_{bb}^{ m Higgs}$	Higgs candidate mass				
$\Delta R_{H,tar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	†			
$\Delta R_{H,\ell}^{\min}$	Minimum ΔR between Higgs candidate and lepton				
$\Delta R_{H,b}^{\min}$	Minimum ΔR between Higgs candidate and <i>b</i> -jet from top				

CP properties: $t\bar{t}H/tH(H \rightarrow b\bar{b})$ w/ 139 fb⁻¹

CP properties: $t\bar{t}H/tH(H\to b\bar{b})$ w/ 139 fb $^{-1}$

- Best fit values:
 - → CP-mixing angle $\alpha = 11^{\circ+52^{\circ}}_{-73^{\circ}}$
 - → coupling strength $k_t^{'} = 0.84^{+0.30}_{-0.46}$
 - ★ Compatible with both $\alpha = 0^{\circ}$ and $\alpha = 90^{\circ}$

★Data prefers SM and disfavours CP-odd hypothesis at **1.2** σ significance.

- Sensitivity driven by the $t\bar{t} + \ge 1b$ modelling uncertainties:
 - \clubsuit Same as in previous round of $t\bar{t}H(H \rightarrow b\bar{b})$ analysis
 - NLO matching (PowhegBox vs. MadGraph5_aMC@NLO)
 - Choice of 4 flavour scheme (with massive b-quarks from ME) vs 5FS with massless b-quarks in the PDF)
 - ➡ Parton Shower and Hadronisation (Pythia 8 vs Herwig7)

PLB 849 (2024) 138469