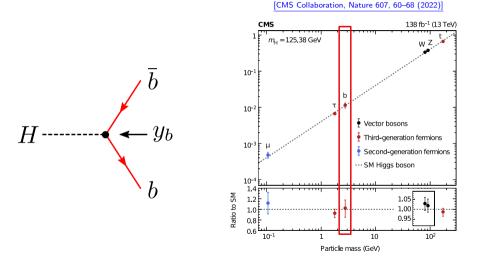
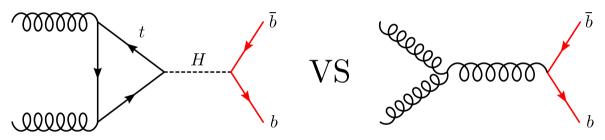
Higgs-boson production in weak-boson fusion and $H \rightarrow b\bar{b}$ decay at NNLO with realistic event selection criteria

Based on Phys.Rev.D 110 (2024) 5, 054017

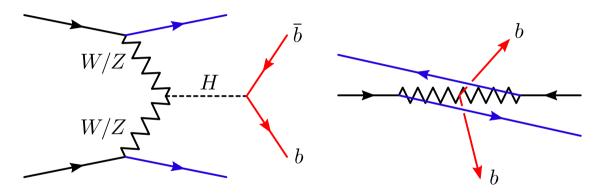
Ivan Novikov HIGGS 2024

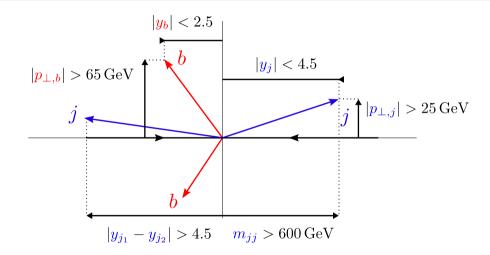

2024-11-06

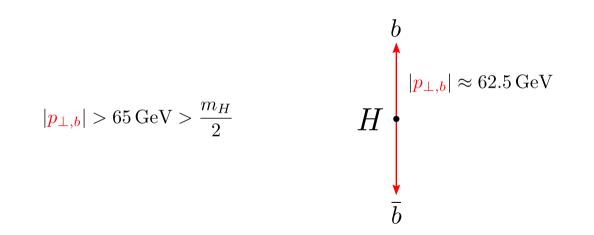
In collaboration with Konstantin Asteriadis, Arnd Behring, Kirill Melnikov, and Raoul Röntsch



b-quark Yukawa coupling y_b

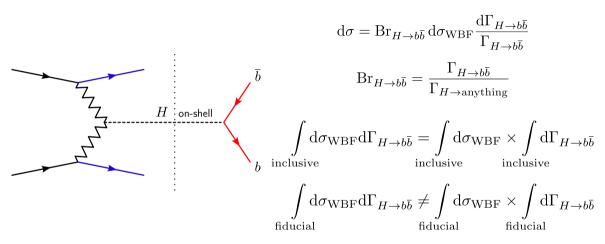

The b-quark Yukawa coupling y_b can be measured in $H \rightarrow b\bar{b}$ decay


The $H \rightarrow b\bar{b}$ decay is difficult to measure due to large number of *b*-jets from QCD backgrounds

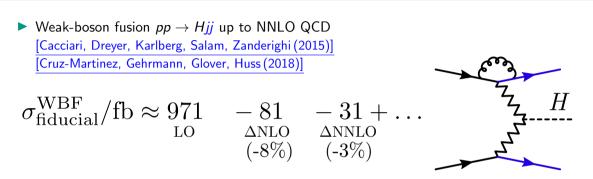


On the other hand, Higgs-boson production in weak-boson fusion (WBF) can be separated from QCD backgrounds by its distinct signature of two back-to-back jets.

Event selection criteria



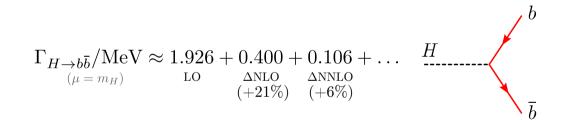
We look for events with two light nearly-back-to-back jets with a high invariant mass and two *b*-tagged jets.


These event selection criteria are rather strict and require production of a boosted Higgs boson

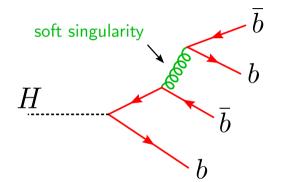
Narrow-width approximation

The event selection criteria introduce a correlation between the production and the decay subprocesses, even in the narrow-width approximation.

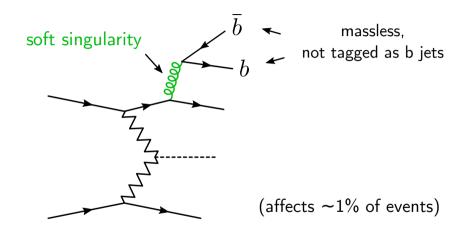
Corrections to weak-boson fusion


- ► Electroweak corrections and interference effects in WBF pp → Hjj up to NLO EW (~ -5%) [Ciccolini, Denner, Dittmaier (2007)]
- ▶ Nonfactorizable corrections to WBF $pp \rightarrow Hjj$ at NNLO QCD (~ -0.3%) [Liu, Melnikov, Penin (2019)] [Asteriadis, Brønnum-Hansen, Melnikov (2023)]

NNLO QCD corrections to weak-boson fusion are of order $\sim -3\%$


Corrections to $H ightarrow bar{b}$ decay

8

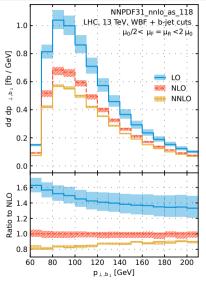

- ► $H \rightarrow b\bar{b}$ with massless *b* quarks up to N³LO [Mondini, Schiavi, Williams (2019)]
- $H \rightarrow b\bar{b}$ with massive *b* quarks up to NNLO [Behring, Bizoń (2020)]

NNLO QCD corrections to $H
ightarrow b ar{b}$ decay are of order $\sim +6\%$

With massless b quarks b-jet tagging is potentially IRC-unsafe, because a soft gluon can split into a $b\bar{b}$ pair, which end up in different jets and change their flavor. In the $H \rightarrow b\bar{b}$ calculation this soft singularity is regulated by a finite b-quark mass. Flavor safety

The available weak-boson-fusion calculations neglect the *b*-quark mass. To ensure IRC-safety, we do not tag *b* jets originating from WBF. As a result, we can use the standard anti- k_{\perp} jet clustering algorithm.

Combined $pp \rightarrow H(\rightarrow b\bar{b})jj$ with NNLO production and LO decay with massless *b* quarks [Asteriadis, Caola, Melnikov, Röntsch (2022)]


$$\sigma_{\rm fiducial}/{\rm fb} = 75.9 - 5.0 - 1.5 + \dots$$

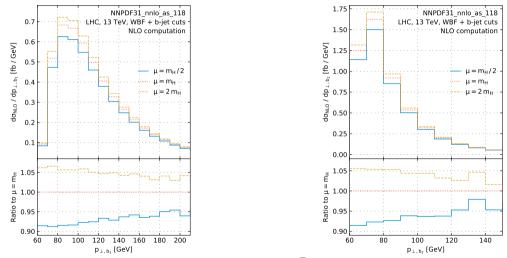
LO $\Delta NLO \Delta NNLO (-7\%) (-2\%)$

▶ New result: $pp \rightarrow H(\rightarrow b\bar{b})jj$ with massive *b* quarks up to NNLO QCD

$$\sigma_{\rm fiducial}/{\rm fb} = 75.6 - 23.2 - 7.8 + \dots$$

LO $\Delta NLO \Delta NNLO$
(-31%) (-10%)

There are large negative corrections to the fiducial cross-section: -41% compared to LO!



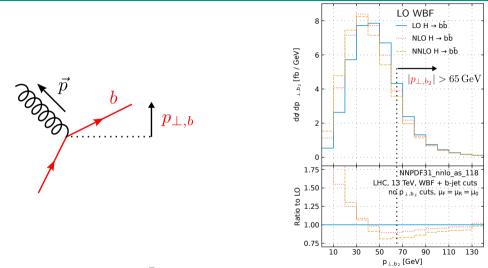
scale variation^{2µ0}_{µ0/2} in WBF

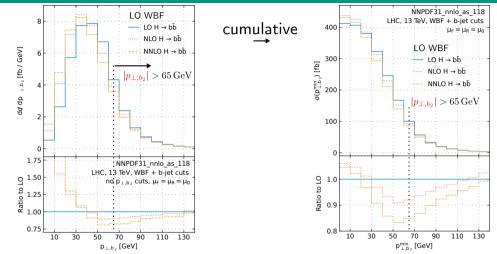
$$\downarrow \qquad \downarrow$$

 $\sigma^{\text{LO}} = 75.6^{-5.6}_{+6.5} \text{ fb} \quad (\pm 9\%)$
 $\sigma^{\text{NLO}} = 52.4^{+1.5}_{-2.6} \text{ fb} \quad (-31\% \pm 3\%)$
 $\sigma^{\text{NNLO}} = 44.6^{+0.9}_{-0.6} \text{ fb} \quad (-10\% \pm 1\%)$

Production-scale variations do not cover the observed large corrections

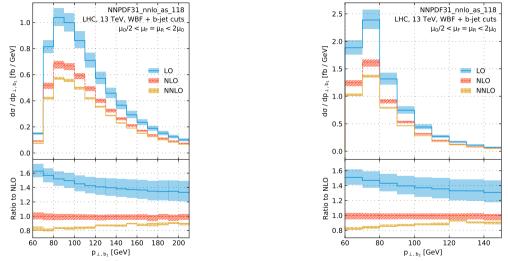
Decay-scale variations


The impact of scale variation in the decay $H \rightarrow b\bar{b}$ is comparable to that in the WBF production, and does not capture the observed large corrections either


$$\mathrm{d}\sigma = \mathrm{Br}_{H \to b\bar{b}} \,\mathrm{d}\sigma_{\mathrm{WBF}} \frac{\mathrm{d}\Gamma_{H \to b\bar{b}}}{\Gamma_{H \to b\bar{b}}} \cdots \rightarrow \begin{bmatrix} \sigma_{\mathrm{fiducial}}/\mathrm{fb} = 75.6 & -5.3 & -5.0 & + \dots \\ \mathrm{LO} & \Delta \mathrm{NLO} & \Delta \mathrm{NNLO} \\ \mathrm{decay} & \mathrm{decay} \\ (-7\%) & (-7\%) \end{bmatrix} \\ \Gamma_{H \to b\bar{b}}/\mathrm{MeV} = 1.926 + 0.400 + 0.106 + \dots \\ \mu = m_{H}) \qquad \mathrm{LO} & \Delta \mathrm{NLO} & \Delta \mathrm{NNLO} \\ (\mu = m_{H}) & \mathrm{LO} & \Delta \mathrm{NLO} & \Delta \mathrm{NNLO} \\ (+21\%) & (+6\%) \end{bmatrix}$$

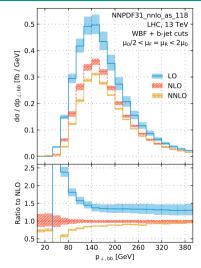
Corrections to the total $H \rightarrow b\bar{b}$ decay width $\Gamma_{H \rightarrow b\bar{b}}$ are *positive*, but they are large and *negative* with the used event selection criteria

Effect of QCD radiation

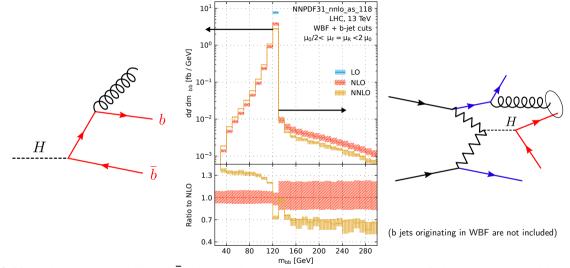


QCD radiation in the $H \rightarrow b\bar{b}$ decay tends to reduce the transverse momentum $p_{\perp,b}$ of the *b*-jet, lowering the probability that they pass the *b*-jet selection criteria. $p_{\perp b_2}$ threshold

With the chosen $p_{\perp b_2}$ threshold the decay corrections do not seem to converge. Relaxing this threshold seems to improve perturbative convergence, but might degrade purity of event selection


$p_{\perp b}$ distributions

The K-factor $d\sigma/d\sigma^{LO}$ is more-or-less flat for distributions of transverse momenta $p_{\perp b}$ for leading $(p_{\perp b_1})$ and subleading $(p_{\perp b_2})$ b jets


p_{bb} distribution

The distribution of the transverse momentum $p_{\perp b\bar{b}}$ of the reconstructed Higgs boson shows stronger suppression at small transverse momentum.

*m*_{bb} distribution

QCD radiation in the $H \rightarrow b\bar{b}$ decay reduces the invariant mass m_{bb} of the reconstructed Higgs boson. Rarely, QCD radiation from weak-boson fusion can increase this invariant mass.

- ▶ We provide, for the first time, an NNLO-QCD-accurate fully-differential description of the combined WBF process $pp \rightarrow H(\rightarrow b\bar{b})jj$.
- *b*-jets originating in WBF are not tagged, a calculation of WBF with *massive b*-quarks would be necessary to account for them.
- There are large negative corrections, the NNLO fiducial cross-section is ~ 40% smaller than the LO cross-section.
- QCD radiation in the $H \rightarrow b\bar{b}$ decay makes a large impact because of stringent restrictions on *b*-jet momenta.

In the future, it would be interesting to try to resum these fixed-order results and/or match them to a parton shower.

- We provide, for the first time, an NNLO-QCD-accurate fully-differential description of the combined WBF process pp → H(→ bb)jj.
- b-jets originating in WBF are not tagged, a calculation of WBF with massive b-quarks would be necessary to account for them.
- There are large negative corrections, the NNLO fiducial cross-section is ~ 40% smaller than the LO cross-section.
- QCD radiation in the $H \rightarrow b\bar{b}$ decay makes a large impact because of stringent restrictions on *b*-jet momenta.

In the future, it would be interesting to try to resum these fixed-order results and/or match them to a parton shower.

Thank you for your attention!

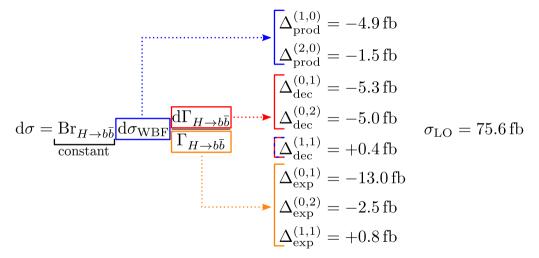
	$\sigma_{ m inclusive}^{ m WBF}/ m fb$	$\sigma^{ m WBF}_{ m fiducial}/{ m fb}$	$\sigma^{ m LO}_{ m fiducial}{}^{H ightarrow b \overline{b}}/{ m fb}$	11 ,007
LO	4099^{+51}_{-67}	971^{-61}_{+69}	$75.9^{-5.6}_{+6.5}$	1926^{+243}_{-194}
NLO	3970^{+25}_{-23}	890^{+8}_{-18}	$70.9\substack{+0.2\\-1.2}$	2327^{+110}_{-112}
NNLO	$3932^{+\bar{1}\bar{5}}_{-10}$	859^{+8}_{-10}	$69.4_{-0.2}^{+0.5}$	2432_{-47}^{+31}

Definition of perturbative truncation

٠

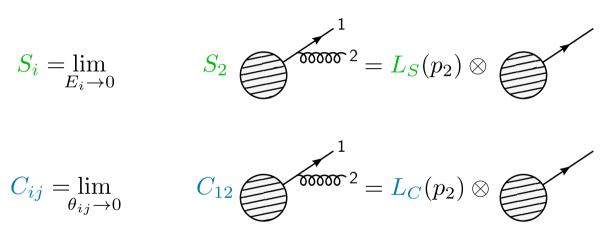
$$d\sigma_{\rm WBF} = d\sigma_{\rm WBF}^{(0)} + d\sigma_{\rm WBF}^{(1)} + d\sigma_{\rm WBF}^{(2)} + \dots$$
$$d\sigma^{\rm N^{n}LO} = {\rm Br}_{H\to b\bar{b}} \sum_{k=0}^{n} d\sigma_{\rm WBF}^{(n-k)} \frac{d\Gamma_{H\to b\bar{b}}^{\rm N^{k}LO}}{\Gamma_{H\to b\bar{b}}^{\rm N^{k}LO}}$$
$$\implies \int d\sigma^{\rm N^{n}LO} = \sigma_{\rm inclusive}^{\rm N^{n}LO}$$

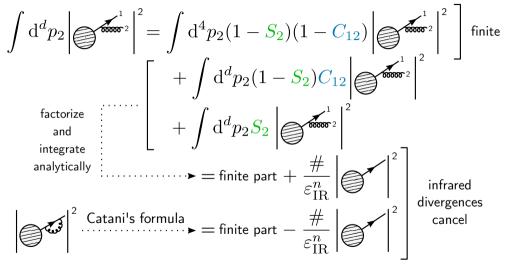
The N'LO cross-section is defined such that upon integration over all events the inclusive cross-section at the same order is exactly reproduced



$$\begin{aligned} \sigma^{(1)} &= \Delta^{(1,0)}_{\rm prod} + \Delta^{(0,1)}_{\rm dec} + \Delta^{(0,1)}_{\rm exp} \qquad \sigma^{(2)} &= \Delta^{(2,0)}_{\rm prod} + \Delta^{(1,1)}_{\rm dec} + \Delta^{(0,2)}_{\rm dec} + \Delta^{(1,1)}_{\rm exp} + \Delta^{(0,2)}_{\rm exp} \\ & d\Gamma_{H \to b\bar{b}} = d\Gamma^{(0)} + d\Gamma^{(1)} + d\Gamma^{(2)} + \dots \\ \Delta^{(i,0)}_{\rm prod} &= \frac{{\rm Br}_{H \to b\bar{b}}}{\Gamma^{\rm LO}} \int d\sigma^{(i)}_{\rm WBF} d\Gamma^{(0)} \qquad \Delta^{(i,1)}_{\rm exp} = -\frac{{\rm Br}_{H \to b\bar{b}}\Gamma^{(1)}}{\Gamma^{\rm LO}\Gamma^{\rm NLO}} \int d\sigma^{(i)}_{\rm WBF} d\Gamma^{(0)} \\ \Delta^{(i,j)}_{\rm dec} &= \frac{{\rm Br}_{H \to b\bar{b}}}{\Gamma^{\rm N^{j} \rm LO}} \int d\sigma^{(i)}_{\rm WBF} d\Gamma^{(j)} \qquad \Delta^{(0,2)}_{\rm exp} = -\frac{{\rm Br}_{H \to b\bar{b}}\Gamma^{(2)}}{\Gamma^{\rm NLO}\Gamma^{\rm NNLO}} \int d\sigma^{(0)}_{\rm WBF} d\Gamma^{\rm NLO} \end{aligned}$$

We split perturbative corrections into production, decay, and expansion corrections


Sources of corrections


This large effect is a sum of corrections to the Higgs production in WBF (-8%), to $H \rightarrow b\bar{b}$ decay (-14%), and the positive corrections to the total $H \rightarrow b\bar{b}$ width $\Gamma_{H \rightarrow b\bar{b}}$ (-19%)

Amplitudes with soft and/or collinear emissions factorize into amplitudes of lower multiplicity and some universal limit factors.

Nested soft-collinear subtraction scheme

We use nested soft-collinear subtraction scheme to cancel infrared divergences between real and virtual corrections.